The Challenge of Composition in Distributional and Formal Semantics Part II

Ran Tian¹, Koji Mineshima² and Pascual Martínez-Gómez³

¹Tohoku University, Japan ²Ochanomizu University, Japan ³AIST, Japan

IJCNLP 2017, Taipei, Taiwan November 27, 2017

Three Challenges

- 1. Meaning Representations (MRs): what are proper MRs for natural languages?
- 2. Compositional Semantics: how to compute the MR of a complex expression from the MRs of its parts?
- 3. Inference: how can we do inference with MRs?
 - We start with Question 2:
 - Combinatory Categorial Grammar (CCG)
 - Lambda Calculus
 - And then move on to Question 1 and Question 3
 - First-order and Higher-order Logics
 - A MR is good if it enables correct and efficient inferences

Assign a MR to each leaf node

- Assign a MR to each leaf node
- Compute the MR of each phrase in terms of the MRs of its parts, according to meaning composition rules

- Assign a MR to each leaf node
- Compute the MR of each phrase in terms of the MRs of its parts, according to meaning composition rules

- Assign a MR to each leaf node
- Compute the MR of each phrase in terms of the MRs of its parts, according to meaning composition rules
- Many grammar rules, many composition rules

- A small set of basic categories (S, NP, N)
- Each functional category of the form X/Y and X\Y specifies how words combine with each other

- A small set of basic categories (S, NP, N)
- Each functional category of the form *X*/*Y* and *X**Y* specifies how words combine with each other and, at the same time, how to compute the MR of a phrase node.

- A small set of basic categories (S, NP, N)
- Each functional category of the form *X*/*Y* and *X**Y* specifies how words combine with each other and, at the same time, how to compute the MR of a phrase node.

- A small set of basic categories (S, NP, N)
- Each functional category of the form *X*/*Y* and *X**Y* specifies how words combine with each other and, at the same time, how to compute the MR of a phrase node.
- A small set of grammar rules and meaning composition rules

Combinatory Rules

Forward Function Application

Backward Function Application

Derivation trees

- Turn the tree upside down (for a historical reason)
- Derivation trees (proof trees)

• Function Application rules

$$\frac{X/Y \quad Y}{F \quad M} > \frac{Y \quad X \setminus Y}{M \quad F} < \frac{F(M)}{X} < \frac{F(M)}{F} < \frac{F(M)}{F}$$

From AB to CCG

- The fragment of categorial grammar consisting of function application rules is called AB grammar (Ajdukiewicz, 1935; Bar-Hillel, 1953)
- Adding more combinatory rules leads to Combinatory Categorial Grammar (CCG) (Steedman, 2000, 2012)

More combinatory rules

Function Composition rules

$$\frac{X/Y \quad Y/Z}{f \quad g} > \mathbf{B}$$
$$\frac{X/Z}{\lambda x.f(g(x))} > \mathbf{B}$$

$$\frac{\begin{array}{ccc} Y \setminus Z & X \setminus Y \\ g & f \\ \hline X \setminus Z \\ \lambda x.f(g(x)) \end{array} < B$$

Crossed Composition rules

$$\frac{X/Y \quad Y\setminus Z}{\int g \quad X\setminus Z} > \mathbf{B}_{\times}$$

$$\frac{\lambda x.f(g(x))}{\lambda x} > \mathbf{B}_{\times}$$

$$\frac{\frac{Y/Z}{g} + \frac{X \setminus Y}{X/Z}}{\frac{X/Z}{\lambda x.f(g(x))}} < \mathbf{B}_{\times}$$

A more complicated derivation John doesn't like Mary ¬*like(john, mary*)

Right node raising shows that "*doesn't like*" can be a constituent: John [[respects] but [doesn't like]] Mary. $respect(john, mary) \land \neg like(john, mary)$

Lambda calculus

- A formal system to represent computation
- Simple yet very expressive

function	input	output
$\lambda x.x + 2$	number x	x + 2
$\lambda x. walk(x)$	entity x	proposition walk(x)

 β -conversion (simplification, substitution):

function argument

$$(\lambda x. [\dots x \dots])$$
 (a) = [... a ...]

Examples:

•
$$(\lambda x.x+2)(5) = 5+2$$

• $(\lambda x.walk(x))(john) = walk(john)$

β -conversion: more examples

 β -conversion (simplification):

function argument

$$(\lambda x. [\dots x \dots])$$
 (a) = [... a ...]

1.
$$(\lambda x.like(x, y))(john) = like(john, y)$$

2.
$$(\lambda y.like(x, y))(john) = like(x, john)$$

- 3. $(\lambda x.like(x, x))(john) = like(john, john)$
- 4. $(\lambda x.like(mary, x) \land boy(x))(john) = like(mary, john) \land boy(john)$

5.
$$((\lambda y.\lambda x.like(x, y))(john))(mary) =$$

 $(\lambda x.like(x, john))(mary) = like(mary, john)$

$\alpha\text{-conversion}$

 α -conversion (renaming):

$$\lambda \mathbf{x} \cdot [\dots \mathbf{x} \dots] = \lambda \mathbf{y} \cdot [\dots \mathbf{y} \dots]$$

Example:

$$\lambda x.boy(x) \land love(x)(z) = \lambda y.boy(y) \land love(y)(z)$$

$\alpha\text{-conversion}$

 α -conversion (renaming):

$$\lambda \mathbf{x} \cdot [\dots \mathbf{x} \dots] = \lambda \mathbf{y} \cdot [\dots \mathbf{y} \dots]$$

Example:

$$\lambda x.boy(x) \land love(x)(z) = \lambda y.boy(y) \land love(y)(z)$$

Lambda calculus vs. Set Theory

Lambda calculus	Set Theory
$\lambda x.Fx$	$\{x \mid Fx\}$
$(\lambda x.Fx)(a)$	$a \in \{x \mid Fx\}$
$(\lambda x.Fx)(a) = Fa$	$a \in \{x \mid Fx\} \Leftrightarrow Fa$

- But is meaning composition via lambda calculus always safe?
- What we need: Type safety
- Type safety lies at the heart of formal compositional semantics

- But is meaning composition via lambda calculus always safe?
- What we need: Type safety
- Type safety lies at the heart of formal compositional semantics

Define simple types:

Туре	Meaning
E	Entity
Т	Proposition
$X \rightarrow Y$	A function from X to Y

Examples:

john, mary :	Е
$\lambda x. walk(x)$:	$E \rightarrow T$
$\lambda y.\lambda x.like(x,y)$:	$E \rightarrow (E \rightarrow T)$

entity function from entities to propositions function from two entities to propositions

- But is meaning composition via lambda calculus always safe?
- What we need: Type safety
- Type safety lies at the heart of formal compositional semantics

Define simple types:

-		n 0	Mooning
_	Iy	pe	Meaning
		Е	Entity
		Т	Proposition
	X ightarrow	Y	A function from X to Y
oles:			
john, mary :	Е		entity
$(x) = \frac{1}{2} \frac{1}{2$	E.	<u>у</u> т	function from c

Examples:

 $\lambda y.\lambda x.like(x,y)$: $E \rightarrow (E \rightarrow T)$

walk(john) : T

entity function from entities to propositions function from two entities to propositions proposition

- But is meaning composition via lambda calculus always safe?
- What we need: Type safety
- Type safety lies at the heart of formal compositional semantics

Define simple types:

Examples:

-	Туре	Meaning
-	E	Entity
	Т	Proposition
	X ightarrow Y	A function from X to Y
xamples:		
john, mary :	Е	entity
$\lambda x. walk(x)$:	$E \to T$	function from e
		to propositions
$\lambda y.\lambda x.like(x,y)$:	$E \rightarrow (E$	\rightarrow T) function from t
		to propositions
walk(john):	Т	proposition
like(john, mary):	Т	proposition

entities

two entities

- But is meaning composition via lambda calculus always safe?
- What we need: Type safety
- Type safety lies at the heart of formal compositional semantics

Define simple types:

	Туре	Meaning	
	E	Entity	
	Т	Proposition	
	X o Y	A function fro	m X to Y
Examples:			
john, mary :	Е	en	tity
$\lambda x. walk(x)$:	$E \to T$	fui	nction from entities
		to	propositions
$\lambda y.\lambda x.like(x,y)$:	$E \rightarrow (E$	\rightarrow T) fur	iction from two entities
	_	to	propositions
walk(john)	Т	pro	oposition
like(john, mary) :	Т	pro	oposition
walk(like):	# type-	mismatch	

Types control semantic composition

 β -conversion (simplification):

Type:
$$A \rightarrow B$$
Type: A Type: B $(\lambda x. [\dots x \dots])$ $(a) = [\dots a \dots]$

Example:

CCG-based Compositional Semantics

• Type information is always implicit in CCG-derivation trees

<

CCG-based Compositional Semantics

• Type information is always implicit in CCG-derivation trees

Syntactic sugar

Special symbols (constants) to represent logical expression:

Logical expression	Туре	
	$\mathtt{T}\to \mathtt{T}$	negation
\wedge	$T \to T \to T$	conjunction
\vee	$T \to T \to T$	disjunction
\rightarrow	$T \to T \to T$	implication
\forall	$(E \rightarrow T) \rightarrow T$	universal quantifier
Ξ	$(E \rightarrow T) \rightarrow T$	existential quantifier
ι	$(E \rightarrow T) \rightarrow E$	iota operator

We can write :

$A \wedge B$	for	$\wedge (A, B)$
∀xFx	for	$\forall (\lambda x.Fx)$
$\exists xFx$	for	$\exists (\lambda x.Fx)$

and so on.

Logics can be encoded in Lambda calculus!

From categories to types

We can define a homomorphism $(\cdot)^{\bullet}$ from categories to types:

$$NP^{ullet} = \mathbb{E}$$

 $S^{ullet} = \mathbb{T}$
 $(X/Y)^{ullet} = (X \setminus Y)^{ullet} = X^{ullet} o Y^{ullet}$

Example:

- $(S \setminus NP)^{\bullet} = E \rightarrow T$ (intransitive verbs)
- $((S \setminus NP)/NP)^{\bullet} = E \rightarrow (E \rightarrow T)$ (transitive verbs)
- As for as the type homomorphism is preserved, there will be no type-clash during meaning composition.

Lexicon: open words and closed words

- For an open word, we can use a template to specify its MR.
- φ is the position in which the lemma of a word appears.

Category	Meaning templates	Туре
$S \setminus NP$	$\lambda \mathbf{x}. \varphi(\mathbf{x})$	E ightarrow T
$(S \setminus NP) / NP$	$\lambda \mathbf{y}.\lambda \mathbf{x}.\varphi(\mathbf{x},\mathbf{y})$	E ightarrow (E ightarrow T)

- For a closed word, we can directly assign its MR.
- For example, if we are interested in logical expressions, we can use the following lexical entries:

Lemma	Category	MR	Туре
some	NP/N	$\lambda F \lambda G. \exists x (Fx \land Gx)$	$(E \rightarrow T) \rightarrow (E \rightarrow T) \rightarrow T$
every	NP/N	$\lambda F \lambda G. \forall x (Fx \land Gx)$	(E ightarrow T) ightarrow (E ightarrow T) ightarrow T
no	NP/N	$\lambda F \lambda G. \neg \exists x (Fx \land Gx)$	$(E \rightarrow T) \rightarrow (E \rightarrow T) \rightarrow T$

Excerpts of Templates from ccg2lambda

CCG category	Meaning Representation
NP	$\lambda NF. \exists x (N(\varphi, x) \land F(x))$
$S \setminus NP_{nom}$	$\lambda Q \mathcal{K}. Q(\lambda I.I, \lambda x. \exists v (\mathcal{K}(\varphi, v) \land (Nom(v) = x)))$
$S \setminus NP_{nom} / NP_{acc}$	$\lambda Q_2 Q_1 K. Q_1(\lambda I. I, \lambda x_1. Q_2(\lambda I. I, \lambda x_2. \exists v(K(\varphi, v)))$
	$\wedge (Nom(v) = x_1) \wedge (Acc(v) = x_2))))$
S/S	$\lambda SK.S(\lambda Jv.K(\lambda v'.(J(v') \land \varphi(v')), v))$
NP/NP	$\lambda QNF.Q(\lambda Gx.N(\lambda y.(\varphi(y) \land G(y)), x), F)$

Types

Type ::=
$$E \mid Event \mid T \mid X \Rightarrow Y$$

Mapping from syntactic categories to semantic types

$$NP^{\bullet} = ((E \rightarrow T) \rightarrow E \rightarrow T) \rightarrow (E \rightarrow T) \rightarrow T$$

$$S^{\bullet} = ((Event \rightarrow T) \rightarrow Event \rightarrow T) \rightarrow T$$

$$(C1/C2)^{\bullet} = (C1 \setminus C2)^{\bullet} = C2^{\bullet} \rightarrow C1^{\bullet}$$

English CCG parser

Japanese CCG parser

- ✓ Kyoto/NAIST Corpus
- ✓ Japanese CCGBank [Uematsu+ ACL2013]
- CCG parser (Jigg, depccg)
 Jigg [Noji and Miyao ACL2016]
 depccg [Yoshikawa+ ACL2017]

✓ Semantic parser (ccg2lambda)

- ccg2lambda [Mineshima+ EMNLP2016]

Three levels of MRs

- (Level 0 : Individual words)
- Level 1 : Predicate-Argument structure
- Level 2 : Basic logical features (negation, disjunction, etc.)
- Level 3 : Higher-order logical features

Level 1: Predicate-Argument Structure

- Who did what, where, when?
- MRs in Event semantics (Parsons, 1990):

Brutus stabbed Caesar on the street at noon.

 $\exists e(stab(e) \land (subj(e) = brutus) \land (obj(e) = caesar) \land (location(e) = street) \land (time(e) = noon))$

- MRs have a flat structure with:
 - ∃ (existential quantifier)
 - \lambda (conjunction)
- Extensional descriptions of scenes or situations

Other notations: DRS and Graph

• Discourse Representation Structure (DRS) (Kamp and Reyle, 1993):

e stab(e) subj(e) = brutus obj(e) = caesar location(e) = street time(e) = noon

Graph notation:

These three notations deliver the same information

- \Rightarrow (2) Brutus stabbed Caesar on the street
- \Rightarrow (3) Brutus stabbed Caesar at noon.
- \Rightarrow (4) Brutus stabbed Caesar.

- \Rightarrow (2) Brutus stabbed Caesar on the street
- \Rightarrow (3) Brutus stabbed Caesar at noon.
- \Rightarrow (4) Brutus stabbed Caesar.

- \Rightarrow (2) Brutus stabbed Caesar on the street
- \Rightarrow (3) Brutus stabbed Caesar at noon.
- \Rightarrow (4) Brutus stabbed Caesar.

- \Rightarrow (2) Brutus stabbed Caesar on the street
- \Rightarrow (3) Brutus stabbed Caesar at noon.
- \Rightarrow (4) Brutus stabbed Caesar.

The Semantics of Voice

• Perceptual report:

John saw Bob walking on the street.

 \Rightarrow Bob walked on the street.

Active-Passive alternation:
 Drutue stabled Cases

Brutus stabbed Caesar.

 \Rightarrow Caesar was stabbed by Brutus.

 Causative-inchoative alternation: John closed the door.
 ⇒ The door became closed.

Level 2: Basic logical features

- Add basic logical expressions:
 - not (negation, ¬)
 - or (disjunction, ∨)
 - *if* (implication, \rightarrow)
 - any (universal quantification, ∀)
- Indeterminate/underspecified description of a situation
- Not easy to visualize ("Draw a picture of A man is not walking")

Basic/general patterns of inferences triggered by logic features

P entails H

- = There is no situation in which P is true but H is false.
- = The information in P already contains the information in H.
- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

- P: Some bears danced.
 - H1. Some animals danced.
 - H2. Some grizzlies danced.
 - H3. Some bears moved.
 - H4. Some bears waltzed.

Basic/general patterns of inferences triggered by logic features

P entails H

- = There is no situation in which P is true but H is false.
- = The information in P already contains the information in H.
- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

- P: Some bears danced.
- \Rightarrow H1. Some animals danced.
 - H2. Some grizzlies danced.
 - H3. Some bears moved.
 - H4. Some bears waltzed.

Basic/general patterns of inferences triggered by logic features

P entails H

- = There is no situation in which P is true but H is false.
- = The information in P already contains the information in H.
- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

- P: Some bears danced.
- \Rightarrow H1. Some animals danced.
- \Rightarrow H2. Some grizzlies danced.
 - H3. Some bears moved.
 - H4. Some bears waltzed.

Basic/general patterns of inferences triggered by logic features

P entails H

- = There is no situation in which P is true but H is false.
- = The information in P already contains the information in H.
- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

- P: Some bears danced.
- \Rightarrow H1. Some animals danced.
- \Rightarrow H2. Some grizzlies danced.
- \Rightarrow H3. Some bears moved.
 - H4. Some bears waltzed.

Basic/general patterns of inferences triggered by logic features

P entails H

- = There is no situation in which P is true but H is false.
- = The information in P already contains the information in H.
- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

- P: Some bears danced.
- \Rightarrow H1. Some animals danced.
- \Rightarrow H2. Some grizzlies danced.
- \Rightarrow H3. Some bears moved.
- \Rightarrow H4. Some bears waltzed.

Basic/general patterns of inferences triggered by logic features

P entails H

- = There is no situation in which P is true but H is false.
- = The information in P already contains the information in H.
- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move
- P entails which sentence? (Moss, 2014)
 - P: Some bears danced.
 - \Rightarrow H1. Some animals danced.
 - \Rightarrow H2. Some grizzlies danced.
 - \Rightarrow H3. Some bears moved.
 - \Rightarrow H4. Some bears waltzed.

We write: Some bears[↑] danced[↑] NP and VP in Some NP VP are upward monotonic

- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

P entails which sentence?

- P: No bears danced.
 - H1. No animals danced.
 - H2. No grizzlies danced.
 - H3. No bears moved.
 - H4. No bears waltzed.

- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

P entails which sentence?

- P: No bears danced.
- \Rightarrow H1. No animals danced.
 - H2. No grizzlies danced.
 - H3. No bears moved.
 - H4. No bears waltzed.

- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

P entails which sentence?

P: No bears danced.

- \Rightarrow H1. No animals danced.
- \Rightarrow H2. No grizzlies danced.

H3. No bears moved.

H4. No bears waltzed.

- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

P entails which sentence?

P: No bears danced.

- \Rightarrow H1. No animals danced.
- \Rightarrow H2. No grizzlies danced.
- \Rightarrow H3. No bears moved.

H4. No bears waltzed.

- $grizzly \leq bear \leq animal$
- waltz \leq dance \leq move

P entails which sentence?

- P: No bears danced.
- \Rightarrow H1. No animals danced.
- \Rightarrow H2. No grizzlies danced.
- \Rightarrow H3. No bears moved.
- \Rightarrow H4. No bears waltzed.

- grizzly ≤ bear ≤ animal
- waltz \leq dance \leq move

P entails which sentence?

P: No bears danced.

 \Rightarrow H1. No animals danced.

 \Rightarrow H2. No grizzlies danced.

 \Rightarrow H3. No bears moved.

 \Rightarrow H4. No bears waltzed.

We write: No bears \downarrow danced \downarrow NP and VP in No NP VP are downward monotonic

• Logical words like *some*, *no*, *every*, *any*, *not*, *if* play a role in determining the upward/downward monotonicity.

Bare NPs

For bare NPs (NPs without determines), predicates play a crucial role.

 $tigress \leq tiger \leq animal$

Tigers are striped. \Rightarrow Tigresses are striped. \Rightarrow Animals are striped.

Tigers are on the lawn. \Rightarrow Tigresses are on the lawn. \Rightarrow Animals are o

Tigers[↓] are striped. (individual-level predicate) Tigers[↑] are on the lawn. (stage-level predicate)

- The basic patterns of monotonicity inferences are directly predictable from logic-based MRs.
- Upward/downward monotonicity properties follow from the properties of logical operators.
 ∃x(bear[↑](x) ∧ dance[↑](x))
 ¬∃x(bear[↓](x) ∧ dance[↓](x))

Level 3: Advanced logic features

There are many linguistic phenomena that allegedly go beyond standard first-order logic.

- Attitudes, modals and aspectual operators.
- Generalized/proportional quantifiers
- Intensional adjectives
- Comparative and superlatives
- Other higher-order predicates

Some features:

- Introducing intensionality (involving speaker's perspectives, mental states, etc.)
- Quantifying over higher-order objects (objects other than entities)
- Not directly formalizable in first-order logics

Attitudes, modals and temporal operators

- Attitude predicates like *know* and *believe* take propositional objects as argument.
- Inferential contrast between factive predicates (eg. know) and non-factive predicate (eg. believe)
- John knows that it is raining.
 ⇒ It is raining.
- John does not know that it is raining.
 ⇒ It is raining.

- modals: likely, probably, might, must, can. etc.
- aspectual operators: progressives, perfectives, etc.

Generalized quantifiers

• Most, half of, 70% of ...

Most students smoked. $\Rightarrow \notin$ Most female student smoked.Most students smoked. \Leftarrow Most student smoked in a building.

 But these quantifiers are known to be not first-orderizable (Barwise and Cooper, 1981)

Adjectives: subsective and non-subsective

Subsective (intersective) adjective

- Dumbo is a small elephant. *small(dumbo) ∧ elephant(dumbo)* ⇒ Dumbo is an elephant. *elephant(dumbo)*
- Non-subsective adjective
 - This is a fake diamond.
 - \Rightarrow This is a diamond.
 - \Rightarrow This is not a diamond.

Comparatives

- Alice is taller than Bob.

 ⇒ Alice is tall.
- Alice is taller than Bob.
- Bob is tall.
 ⇒ Alice is tall.
- Alice is taller than Bob.
- Bob is taller than Carol.
 - \Rightarrow Alice is taller than Carol.

Question:

- What are proper MRs for adjective constructions that are suitable to efficient inferences?
- How to give a compositional semantics of predicates *tall* and *taller* (how the meanings of *tall* and *taller* are related to each other?)

Some higher-order predicates

- Higher-order predicates that apply to objects other than entities: *rise, change, decrease*
- The price of gasoline is rising.
- The price of gasoline is 1,000 dollars.
 - \Rightarrow 1,000 dollars are rising.

Logic-based Meaning Representations

Logic-based Meaning Representations

Logic-based Meaning Representations

HOL as representation language

Higher-order constructions in natural languages

- Generalized quantifiers
 Most students work → most(λ.student(x), λx.work(x))
- 2 Modals John might come → might(come(j))
- Someone managed to come → ∃x(manage(x, come(x))) Someone failed to come → ∃x(fail(x, come(x)))
- 4 Attitude verbs John knows that some student came. ~--

 $know(j, \exists x(student(x) \land come(x)))$

- Higher-order inference system implemented in Coq (Mineshima et al., 2015)
- Alternative: first-order decomposition/reification (Hobbs, 1985)

Natural Language Inference (Recognizing Textual Entailment, RTE)

- Does P entail H?
- P Most cities in Japan prohibit smoking in restaurants.
- H Some cities in Japan do not allow smoking in public spaces.

Yes (entail)

- The best way of testing an NLP system's semantic capacity (Cooper et al. 1996)
- Many applications in NLP
 - Question Answering,
 - Text Summarization
 - Fact validation/checking
 - etc.

Datasets for Recognizing Textual Entailment (RTE)

• English:

Dataset	Size	Crowdsourcing
FraCaS (Cooper et al., 1994)	346	
PASCAL-RTE1-5 (Dagan et al. 2006)	7K	
SICK (Marelli et al., 2014)	10K	\checkmark
SNLI (Bowman et al., 2015)	570K	
MultiNLI (Williams et al. 2017)	432K	

• Japanese:

Dataset	Size	Crowdsourcing
JSeM	780	
NTCIR RITE 1–2	1,800	
Kyoto RTE dataset	2,471	

FraCaS (Cooper et al. 1996)

- Created by linguists in 1990s.
- Size: 346 problems
- The inferences are divided into nine sections in terms of linguistic phenomena:
 - Generalized quantifier, Plurals, Nominal anaphora, Ellipsis, Adjective, Comparatives, Temporal reference, Verbs, Attitudes
- Contains lots of logical expressions (at Level 2 and Level 3)
- · Lexical and world knowledge is mostly excluded
- Contains multiple-premise inferences

# premise	# problem	
1	192	55.5%
2	122	35.3%
3	29	8.4%
4	2	0.6%
5	1	0.3%
FraCaS: Examples

 The XML format was created by Bill MacCartney https://nlp.stanford.edu/wcmac/downloads/

fracas-038 (Generalized quantifier) label: no (contradiction)P: No delegate finished the report.H: Some delegate finished the report on time.

fracas-084 (Plural) label: yes (entailment)

P: Either Smith, Jones or Anderson signed the contract.

H: If Smith and Anderson did not sign the contract, Jones signed the contract.

fracas-134 (Nominal Anaphora) label: yes (entailment)
P1: Every customer who owns a computer has a service contract for it.
P2: MFI is a customer that owns exactly one computer.
H: MFI has a service contract for all its computers.

Japanese Semantics Test Suite (JSeM)

Kawazoe et al. (2015)

http://researchmap.jp/community-inf/JSeM/

- Translation of FraCaS (624 problems) and Japanese original ones (166 problems)
- Each problem is tagged with:
 - phenomena type (quantifier, adjective, negation, etc.)
 - inference type (logical entailment, presupposition)
- single-premised (66%) and multi-premised (34%) problems

jsem-id:1	answer: yes linked to: fracas-001	inference type: entailment literal translation?: yes	phenomena: Generalized Quantifier, conservativity same phenomena?: unknown
P1			
script	あるイタリア人が世界最高のテノール歌手になった。		
English H	An Italian became the world's greatest tenor.		
script	世界最高のテノール歌手になったイタリア人がいた。		
English	There was an Italian w	ho became the world's greate	est tenor.

SICK (Sentences Involving Compositional Knowldedge) SemEval14, Marelli et al. (2013)

- Size: 4,500/500/4,927 for training, dev. and testing.
- Premise: taken from image captions in Flickr30k Corpus
- Hyphothesis and Label: crowdsourcing and expert-check
- contains only single-premise inferences
- contains logical expressions at Level 2 (negation, disjunction, quantifiers)
- Both word-level and phrase-level paraphrases are required

SICK: Examples

SICK-506 (label: no)

P: A man wearing a dyed black shirt is sitting at the table and laughing. H: There is no man wearing a shirt dyed black, sitting at the table and laughing.

SICK-718 (label: unknown)

P: A few men in a competition are running outside.

H: A few men are running competitions outside.

SICK-3156 (label: yes) P: A man is cutting a box. H: A box is being cut by a man.

SICK-3668 (label: yes) P: A man is strolling in the rain. H: A man is walking in the rain.

SNLI

Bowman et al. (2015)

- The Stanford Natural Language Inference (SNLI) Corpus
- P: taken from image captions in Flickr30k Corpus
- H and Label: crowdsourcing
- · contains only single-premise inferences
- sentences are confined to descriptions of scenes, not containing logical features (limited to Level 1)
- largely limited to simple lexical inferences

label: entailment

P: A white dog with long hair jumps to catch a red and green toy.

H: An animal is jumping to catch an object.

MultiNLI

Williams et al. (2017)

• The Multi-Genre Natural Language Inference (MultiNLI)

genre: Fiction, answer: entailment P: He turned and saw Jon sleeping in his half-tent. H: He saw Jon was asleep.

genre: telephone, answer: contradiction

P: someone else noticed it and i said well i guess that's true and it was somewhat melodious in other words it wasn't just you know it was really funny

H: No one noticed and it wasn't funny at all.

- A set of linguistic phenomena tags are automatically assigned to the development set (10K sentences):
 - quantifiers, belief verbs, time terms, conditionals, etc.

Summary

- Compositional Semantics:
 - Meaning composition via CCG and Lambda Calculus
- Meaning Representations:
 - Three levels of MRs for semantic composition:
 Predicate-Argument Structure, Basic Logics and beyond
 - Event Semantics, First-order logic, and Higher-order logic
- Inference: RTE datasets

Introduction to ccg2lambda

• Syntactic categories and rules indicate composition.

- Syntactic categories and rules indicate composition.
- Open words: schematic lexical entries match syntactic categories.

- Syntactic categories and rules indicate composition.
- Open words: schematic lexical entries match syntactic categories.
- β-reduction with lemmas as arguments.

- Syntactic categories and rules indicate composition.
- Open words: schematic lexical entries match syntactic categories.
- β-reduction with lemmas as arguments.
- Semantics more interesting for verbs.

- Syntactic categories and rules indicate composition.
- Open words: schematic lexical entries match syntactic categories.
- β-reduction with lemmas as arguments.
- Semantics more interesting for verbs.
- Closed words: direct assignment.

- Syntactic categories and rules indicate composition.
- Open words: schematic lexical entries match syntactic categories.
- β-reduction with lemmas as arguments.
- Semantics more interesting for verbs.
- Closed words: direct assignment.
- Semantic composition from leaves to root.

- Syntactic categories and rules indicate composition.
- Open words: schematic lexical entries match syntactic categories.
- β-reduction with lemmas as arguments.
- Semantics more interesting for verbs.
- Closed words: direct assignment.
- Semantic composition from leaves to root.
- Logical meaning representation of the sentence at the root.

Lexical entries

For closed words: lexical entries directly assigned to surface form (a limited number of grammatical and logical expressions): 80 entries

Example

- category: NP/N
- semantics: $\lambda F \lambda G \lambda H. \forall x (Fx \land Gx \rightarrow H)$
- surf: every
- Por open words: schematic lexical entry (semantic templates) assigned to syntactic categories: 57 entries

Example

- category: N
- semantics: $\lambda E \lambda x. E(x)$

"E" is a position in which a particular lexical item appears.

- Publicly available and open-sourced.
- Easy to use (simple programs):

- Publicly available and open-sourced.
- Easy to use (simple programs):
 - # python semparse.py ccgtrees.xml templates.yaml semantics.xml

```
1
2
3
4
            <?xml version='1.0' encoding='utf=8?>
            <root>
              <document>
                <sentences>
5
6
7
8
9
10
                   <sentence>
                    <tokens>
                      <token id="t0_0" pos="DT" cat="NP[nb]/N"
                                                                         surf="Some"
                                                                                         base="some"/>
                      <token id="t0_1" pos="NN" cat="N"
                                                                         surf="woman"
                                                                                         base="woman"/>
                    </tokens>
11
12
13
                    <ccg root="s0_sp0" id="s0_ccg0">
                      <span id="s0_sp0" child="s0_sp1 s0_sp9" category="S[dcl=true]"</pre>
                                                                                                    rule="rp"/>
                      <span id="s0_sp1" child="s0_sp2 s0_sp5" category="S[dcl=true]"</pre>
                                                                                                    rule="ba"/>
14
15
                    </ccg>
16
17
                    <semantics status="success" root="s0_sp0">
                      <span id="s0_sp0" child="s0_sp1 s0_sp9"</pre>
18
                             sem="exists x.(_woman(x) & TrueP & exists z1.(_tea(z1) & TrueP & _order(x,z1)))"/>
19
                      <span id="s0_sp4" type="_woman : Entity -> Prop"
20
21
22
23
24
25
                             sem="\x._woman(x)"/>
                    </semantics>
                  </sentence>
                </sentences>
              </document>
26
            </root>
```

- Publicly available and open-sourced.
- Easy to use (simple programs):
 - # python semparse.py ccgtrees.xml templates.yaml semantics.xml
 - # python visualize.py semantics.xml > semantics.html

- Publicly available and open-sourced.
- Easy to use (simple programs):
 - # python semparse.py ccgtrees.xml templates.yaml semantics.xml
 - # python visualize.py semantics.xml > semantics.html
 - # python prove.py semantics.xml

https://github.com/mynlp/ccg2lambda

- Publicly available and open-sourced.
- Easy to use (simple programs):
 - # python semparse.py ccgtrees.xml templates.yaml semantics.xml
 - # python visualize.py semantics.xml > semantics.html
 - # python prove.py semantics.xml
- Easy to extend (declarative).

```
- semantics : \lambda-formula
```

```
category : syntactic_category
```

 $\texttt{cond}_2: value_2$

```
\texttt{cond}_{\texttt{i}}: value_i
```

- Publicly available and open-sourced.
- Easy to use (simple programs):
 - # python semparse.py ccgtrees.xml templates.yaml semantics.xml
 - # python visualize.py semantics.xml > semantics.html
 - # python prove.py semantics.xml
- Easy to extend (declarative).
- Easy to process (XML output).

- Does Premise P entail Hypothesis H?
- **P** Smoking in restaurants is prohibited by law in most cities in Japan.
- **H** Smoking in public spaces is not allowed in some cities.

Yes (Entailment)

- Does Premise P entail Hypothesis H?
- **P** Smoking in restaurants is prohibited by law in most cities in Japan.
- **H** Smoking in public spaces is not allowed in some cities.

Yes (Entailment)

- The best way of testing an NLP system's semantic capacity (Cooper et al. 1996)
- Many application areas (Question Answering, Machine Translation, etc.)

- Does Premise P entail Hypothesis H?
- P Smoking in restaurants is prohibited by law in most cities in Japan.
- **H** Smoking in public spaces is **not** allowed in **some** cities.

Yes (Entailment)

- The best way of testing an NLP system's semantic capacity (Cooper et al. 1996)
- Many application areas (Question Answering, Machine Translation, etc.)
- relevant factors:
 - 1. syntax
 - 2. logical words: *most*, *not*, *some*, *every*

Logical/ Compositional semantics

- Does Premise P entail Hypothesis H?
- **P** Smoking in restaurants is prohibited by law in most cities in Japan.
- **H** Smoking in public spaces is not allowed in some cities.

Yes (Entailment)

- The best way of testing an NLP system's semantic capacity (Cooper et al. 1996)
- Many application areas (Question Answering, Machine Translation, etc.)
- relevant factors:
 - 1. syntax
 - 2. logical words: most, not, some, every
 - 3. content words: restaurant \rightarrow public_space prohibited $\rightarrow \neg$ allowed

Logical/ Compositional semantics

Lexical Knowledge

Introducing Lexical Knowledge

Introduction

Logic sometimes is not enough

T: men are sawing logs.

 $\exists x.(\max(x) \land \exists y.(\log(y) \land \operatorname{saw}(x, y))$

H: men are cutting wood.

 $\exists x.(man(x) \land \exists y.(wood(y) \land cut(x, y))$
Introduction

Logic sometimes is not enough

T: men are sawing logs.

 $\exists x.(\max(x) \land \exists y.(\log(y) \land \operatorname{saw}(x, y))$

H: men are cutting wood.

 $\exists x.(\mathsf{man}(x) \land \exists y.(\mathsf{wood}(y) \land \mathsf{cut}(x,y))$

Method: to inject lexical knowledge into the proof.

• Word relations can be found in ontologies (e.g. WordNet, etc.)

 $\forall x \forall y.\mathsf{saw}(x,y) \to \mathsf{cut}(x,y)$

 $\forall x. \mathsf{log}(x) \to \mathsf{wood}(x)$

Running example:

 $\exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1)$

T: A black and white dog naps .

H: A black and white dog sleeps .

 $\exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2)$

• Obtain semantic representation.

Running example:

$$\exists x_1 v_1(\operatorname{dog}(x_1) \land \operatorname{white}(x_1) \land \operatorname{black}(x_1) \land \operatorname{nap}(v_1) \land \operatorname{Subj}(v_1) = x_1)$$

$$T: A (\underline{black}) and (\underline{white}) (\underline{dog}) (\underline{naps}).$$

$$H: A (\underline{black}) and (\underline{white}) (\underline{dog}) (\underline{sleeps}).$$

$$\exists x_2 v_2(\operatorname{dog}(x_2) \land \operatorname{white}(x_2) \land \operatorname{black}(x_2) \land \operatorname{sleep}(v_2) \land \operatorname{Subj}(v_2) = x_2)$$

Identify content/interesting words.

Running example:

 $\exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1)$

 $\exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2)$

• Enumerate possible relations.

Running example:

 $\exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1)$

 $\exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2)$

- Select/predict relations according to ontology or classifier:
 - $\forall x.black(x) \rightarrow \neg white(x)$
 - $\forall x.white(x) \rightarrow \neg black(x)$
 - $\forall v.nap(v) \rightarrow sleep(v)$

Running example:

$$\exists x_1 v_1(\operatorname{dog}(x_1) \land \operatorname{white}(x_1) \land \operatorname{black}(x_1) \land \operatorname{nap}(v_1) \land \operatorname{Subj}(v_1) = x_1)$$

$$T: A (\underbrace{black}) and (\underbrace{white}) (\underbrace{dog}) (\underbrace{naps}).$$

$$H: A (\underbrace{black}) and (\underbrace{white}) (\underbrace{dog}) (\underbrace{sleeps}).$$

$$\exists x_2 v_2(\operatorname{dog}(x_2) \land \operatorname{white}(x_2) \land \operatorname{black}(x_2) \land \operatorname{sleep}(v_2) \land \operatorname{Subj}(v_2) = x_2)$$

Insert knowledge, run proof.

- ... and possibly get the wrong answer.
- This problem is aggravated for longer sentences.

 $T: \exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1) \\ H: \exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2) \end{cases}$

p_{1} :	$dog(x_1)$
p_2 :	$white(x_1)$
p_3 :	$black(x_1)$
p_4 :	$\operatorname{Subj}(v_1) = x_1$
p_5 :	$nap(v_1)$

step 0

Decompose T and H into:

- Pool of logical premises P.
- List of sub-goals G.

 $\begin{array}{c} g_{1:} \ \mathsf{dog}(x_{2}) \\ g_{2:} \ \mathsf{white}(x_{2}) \\ g_{3:} \ \mathsf{black}(x_{2}) \\ g_{4:} \ \mathsf{Subj}(v_{2}) = x_{2} \\ g_{5:} \ \mathsf{sleep}(v_{2}) \end{array}$

 $T: \exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1) \\ H: \exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2) \end{cases}$

_	
$(\bar{p}_1]$	$\log(x_1)$
$(p_2; v_2)$	white $(x_1)^{}$
$(\bar{p}_3:\bar{k})$	$plack(x_1)$
\bar{p}_4 :	$\operatorname{Subj}(v_1) = x_1$
p_5 : r	$hap(v_1)$

step 1

$$\begin{array}{c} \hline g_{1}: \operatorname{dog}(x_{1}) \\ \hline g_{2}: \operatorname{white}(x_{1}) \\ \hline g_{3}: \operatorname{black}(x_{1}) \\ g_{4}: \operatorname{Subj}(v_{2}) = x_{1} \\ g_{5}: \operatorname{sleep}(v_{2}) \end{array}$$

- Pool of logical premises P.
- List of sub-goals G.
- Variable unification $x_2 := x_1$.
 - Prove g_1, g_2 and $g_3 \dots$
 - ... using p_1, p_2 and p_3 .

 $T: \exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1) \\ H: \exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2) \end{cases}$

p_1 :	$dog(x_1)$
p_2 :	$white(x_1)$
p_3 :	$black(x_1)$
$(\bar{p}_4]$	$\overline{Subj}(v_1) = x_1$
\bar{p}_5 :	$\operatorname{nap}(v_1)$

$$\begin{array}{c} \hline g_1: \operatorname{dog}(x_1) \\ g_2: \operatorname{white}(x_1) \\ g_3: \operatorname{black}(x_1) \\ g_4: \operatorname{Subj}(v_1) = x_1 \\ g_5: \operatorname{sleep}(v_1) \end{array}$$

- Pool of logical premises P.
- List of sub-goals G.
- Variable unification $x_2 := x_1$.
 - Prove g_1, g_2 and $g_3 \dots$
 - ... using p_1, p_2 and p_3 .
- Variable unification $v_2 := v_1$.
 - Prove g_4 using p_4 .

 $T: \exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1) \\ H: \exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2) \end{cases}$

p_1 :	$dog(x_1)$
p_2 :	$white(x_1)$
p_3 :	$black(x_1)$
p_4 :	$\operatorname{Subj}(v_1) = x_1$
$(\bar{p}_{5}]$	$\operatorname{nap}(v_1)$

step 3

$$\underbrace{\begin{array}{c} p_{4}: \operatorname{Subj}(v_{1}) = x_{1} \\ (p_{5}: \operatorname{nap}(v_{1}) \end{array})}_{g_{1}: \operatorname{dog}(x_{1})}$$

$$\begin{array}{l} \begin{array}{l} g_{2} \colon \mathsf{white}(x_{1}) \\ g_{3} \colon \mathsf{black}(x_{1}) \\ g_{4} \colon \mathsf{Subj}(v_{1}) = x_{1} \\ g_{5} \colon \mathsf{sleep}(v_{1}) \end{array}$$

- Pool of logical premises *P*.
- List of sub-goals G.
- Variable unification $x_2 := x_1$.
 - Prove g_1, g_2 and $g_3 \dots$
 - ... using p_1, p_2 and p_3 .
- Variable unification $v_2 := v_1$.
 - Prove g₄ using p₄.
- Inject axiom $\forall v.nap(v) \rightarrow sleep(v)$.
 - nap(v₁) and sleep(v₁) share variable.
 - nap-sleep ∈ WordNet.
 - Continue proof.

 $T: \exists x_1 v_1(\mathsf{dog}(x_1) \land \mathsf{white}(x_1) \land \mathsf{black}(x_1) \land \mathsf{nap}(v_1) \land \mathsf{Subj}(v_1) = x_1) \\ H: \exists x_2 v_2(\mathsf{dog}(x_2) \land \mathsf{white}(x_2) \land \mathsf{black}(x_2) \land \mathsf{sleep}(v_2) \land \mathsf{Subj}(v_2) = x_2) \end{cases}$

p_1 :	$dog(x_1)$
p_2 :	$white(x_1)$
p_3 :	$black(x_1)$
p_4 :	$\operatorname{Subj}(v_1) = x_1$
$(\bar{p}_{5}]$	$\operatorname{nap}(v_1)$

step 3

$$\underbrace{\begin{array}{c} p_{4}: \operatorname{Subj}(v_{1}) = x_{1} \\ (p_{5}: \operatorname{nap}(v_{1}) \end{array})}_{g_{1}: \operatorname{dog}(x_{1})}$$

$$\begin{array}{l} \begin{array}{l} g_{2} \colon \mathsf{white}(x_{1}) \\ g_{3} \colon \mathsf{black}(x_{1}) \\ g_{4} \colon \mathsf{Subj}(v_{1}) = x_{1} \\ g_{5} \colon \mathsf{sleep}(v_{1}) \end{array}$$

- Pool of logical premises *P*.
- List of sub-goals G.
- Variable unification $x_2 := x_1$.
 - Prove g_1, g_2 and $g_3 \dots$
 - ... using p_1, p_2 and p_3 .
- Variable unification $v_2 := v_1$.
 - Prove g₄ using p₄.
- Inject axiom $\forall v.nap(v) \rightarrow sleep(v)$.
 - nap(v₁) and sleep(v₁) share variable.
 - nap-sleep ∈ WordNet.
 - Continue proof.

 $\textit{T}: \exists x_1 \textit{v}_1(\textit{dog}(x_1) \land \textit{white}(x_1) \land \textit{black}(x_1) \land \textit{nap}(\textit{v}_1) \land \textit{Subj}(\textit{v}_1) = x_1)$

 $H: \exists x_1 v_1(dog(x_1) \land white(x_1) \land black(x_1) \land sleep(v_1) \land Subj(v_1) = x_1)$

$$T: \exists x_1 v_1(dog(x_1) \land white(x_1) \land black(x_1) \land nap(v_1) \land Subj(v_1) = x_1)$$

 $H: \exists x_1^{\flat} v_1^{\flat}(\textit{dog}(x_1) \land \textit{white}(x_1) \land \textit{black}(x_1) \land \textit{sleep}(v_1) \land \textit{Subj}(v_1) = x_1)$

• Variable unification from proof...

 $T: \exists x_1 v_1(\textit{dog}(x_1) \land \textit{white}(x_1) \land \textit{black}(x_1) \land \textit{nap}(v_1) \land \textit{Subj}(v_1) = x_1)$

 $H: \exists x_1 v_1(dog(x_1) \land white(x_1) \land black(x_1) \land sleep(v_1) \land subj(v_1) = x_1)$

- Variable unification from proof...
 - Defines an alignment between logic predicates.
 - Most theorem provers perform backtracking in the search of best alignment.

 $\textit{T}: \exists x_1 \textit{v}_1(\textit{dog}(x_1) \land \textit{white}(x_1) \land \textit{black}(x_1) \land \textit{nap}(\textit{v}_1) \land \textit{Subj}(\textit{v}_1) = x_1)$

 $H: \exists x_1 v_1(dog(x_1) \land white(x_1) \land black(x_1) \land sleep(v_1) \land Subj(v_1) = x_1)$

- Variable unification from proof...
 - Defines an alignment between logic predicates.
 - Most theorem provers perform backtracking in the search of best alignment.
- Better identify logic/textual relations:
 - $\forall v.nap(v) \rightarrow sleep(v)$.

System

Tokenize T and H.

- 2 Syntactic parsing with C&C and EasyCCG.
- **3** Obtain Meaning Representations with ccg2lambda.
- 4 Monitor proof and inject axioms on-demand:
 - synonymy (e.g. house \rightarrow home),
 - hypernymy (e.g. sea \rightarrow water),
 - adjectival similarity (e.g. huge ightarrow big),
 - derivationally related forms (e.g. accommodating \rightarrow accommodation),
 - inflection relations (e.g. wooded \rightarrow wood),
 - antonymy relations (e.g. big $\rightarrow \neg$ small).

SICK dataset

- Size: 4,500/500/4,927 for training, dev. and testing.
- Label distribution: .29/.15/.56 for yes/no/unk.
- About 212,000 running words.
- Average premise and conclusion length: 10.6.
- No parameter estimation.

SICK dataset

- Size: 4,500/500/4,927 for training, dev. and testing.
- Label distribution: .29/.15/.56 for yes/no/unk.
- About 212,000 running words.
- Average premise and conclusion length: 10.6.
- No parameter estimation.

Examples:

Problem ID	T-H pairs	Entailment	
1/10	T: Men are sawing logs .	Yes	
1412	H: Men are cutting wood .		
1111	T: There is no man eating food .	No	
4114	H: A man is eating a pizza .		
719	T: A few men in a competition are running outside .		
/10	H: A few men are running competitions outside .	Ulikilowii	

System	Prec.	Rec.	Acc.
Baseline (majority)	_	—	56.69

System	Prec.	Rec.	Acc.
Baseline (majority)	—	—	56.69
MLN	—	—	73.40
Nutcracker	_	_	74.30
Nutcracker-WN	_	_	77.50
Nutcracker-WN-PPDB	_	_	78.60
MLN-WN-PPDB	_	_	80.40
LangPro Hybrid-800	97.95	58.11	81.35
The Meaning Factory	93.63	60.64	81.60

System	Prec.	Rec.	Acc.
Baseline (majority)	-	—	56.69
MLN	_	_	73.40
Nutcracker	_	_	74.30
Nutcracker-WN	_	_	77.50
Nutcracker-WN-PPDB	_	_	78.60
MLN-WN-PPDB	_	_	80.40
LangPro Hybrid-800	97.95	58.11	81.35
The Meaning Factory	93.63	60.64	81.60
No axioms	98.90	46.48	76.65
Naïve	92.99	59.70	80.98
SPSA,WN,VO	97.04	63.64	83.13

System	Prec.	Rec.	Acc.
Baseline (majority)	-	—	56.69
MLN	-	_	73.40
Nutcracker	-	_	74.30
Nutcracker-WN	-	_	77.50
Nutcracker-WN-PPDB	_	_	78.60
MLN-WN-PPDB	_	_	80.40
LangPro Hybrid-800	97.95	58.11	81.35
The Meaning Factory	93.63	60.64	81.60
No axioms	98.90	46.48	76.65
Naïve	92.99	59.70	80.98
SPSA,WN,VO	97.04	63.64	83.13
SemantiKLUE	85.40	69.63	82.32
UNAL-NLP	81.99	76.80	83.05
ECNU	84.37	74.37	83.64
Illinois-LH	81.56	81.87	84.57
MLN-eclassif (CL2016)	-		85.10
Yin-Schutze (EACL2017)	_	_	87.10

Error analysis

(more complex examples in back-up slide)

Prob. ID	T-H pairs	Gold	System	Axioms needed
1/12	T: Men are sawing logs .	Vec	Vec	$\forall v.saw(v) \rightarrow cut(v)$
1412	H: Men are cutting wood .	res	Tes	$\forall x. \log(x) \rightarrow wood(x)$
2404	T: The lady is slicing a tomato .	No No	No	$\forall y \text{ slice}(y) \rightarrow \text{cut}(y)$
	H: There is no one cutting a tomato .		$VV:silee(V) \rightarrow Cut(V)$	
2805	T: The man isn't lifting weights .	No	No	$\forall x weight(x) \rightarrow barbell(x)$
2095	H: The man is lifting barbells .		NO	$\forall x. weight(x) \rightarrow barben(x)$

Error analysis

(more complex examples in back-up slide)

Prob. ID	T-H pairs	Gold	System	Axioms needed
1/12	T: Men are sawing logs .	Vec	Vec	$\forall v.saw(v) \rightarrow cut(v)$
1412	H: Men are cutting wood .	Tes Tes	$\forall x. \log(x) \rightarrow wood(x)$	
2404	T: The lady is slicing a tomato .	No	No	$\forall y \in lice(y) \rightarrow cut(y)$
2404	H: There is no one cutting a tomato .		NO	V .sice $(V) \rightarrow \operatorname{cut}(V)$
2805	T: The man isn't lifting weights .	No	No	$\forall x weight(x) \rightarrow barbell(x)$
2095	H: The man is lifting barbells .		NO	$\forall x. weight(x) \rightarrow barben(x)$
F 20	T: A biker is wearing gear which is black .	11.1.	X	
530	H: A biker wearing black is breaking the gears .	Unk	res	

Error analysis

(more complex examples in back-up slide)

Prob. ID	T-H pairs	Gold	System	Axioms needed
1412	T: Men are sawing logs . H: Men are cutting wood .	Yes	Yes	$ \begin{array}{l} \forall v. saw(v) \to cut(v) \\ \forall x. log(x) \to wood(x) \end{array} $
2404	T: The lady is slicing a tomato . H: There is no one cutting a tomato .	No	No	$\forall v. slice(v) \rightarrow cut(v)$
2895	T: The man isn't lifting weights . H: The man is lifting barbells .	No	No	$\forall x. weight(x) \rightarrow barbell(x)$
530	T: A biker is wearing gear which is black . H: A biker wearing black is breaking the gears .	Unk	Yes	
1495	T: A man is playing a guitar . H: A man is strumming a guitar .	Yes	Unk	$\forall v. play(v) \to strum(v)$
1266	T: A band is playing on a stage . H: A band is playing onstage .	Yes	Unk	"on a stage" \rightarrow "onstage"
2166	T: A woman is sewing with a machine . H: A woman is using a machine made for sewing .	Yes	Unk	"sewing with a machine" → "using a machine made for sewing"
384	T: A white and tan dog is running through the tall and green grass	Yes	Unk	"tall and green grass" \rightarrow "field"
	H: A white and tan dog is running through a field .		1	

Recognizing phrase entailments is also necessary!

T: men walk in the tall and green grass.

 $\exists x.(man(x) \land \exists y.(tall(y) \land green(y) \land grass(y) \land walk(x, y))$

H: men walk in the field.

 $\exists x.(man(x) \land \exists y.(field(y) \land walk(x, y))$

Problem:

- Such knowledge can not be found in databases (e.g. WordNet, PPDB).
- Semantic relatedness \neq semantic entailment.
- Distributional approaches (e.g. word2vec) are not effective:
 - piano \Rightarrow guitar, cat \Rightarrow dog

Get visual denotations of phrases and compare images.

- T: men walk in the tall and green grass.
- H: men walk in the field.

Get visual denotations of phrases and compare images.

- T: He chats with his wife via internet camera.
- H: He chats with his wife via webcam.

Step 1: phrase pair identification

Identify examples of phrase equivalences.

Step 2: obtain visual denotations

Query images using phrases.

Step 3: Learn RTE Classifier

• Learn parameters of RTE classifier.

Step 4: Integrate into RTE pipeline

Integrate on RTE pipeline and evaluate.

H: Some people walk in the field.

Select best and worst phrase pair according to:

$$\operatorname{score}(t,h) = \frac{1}{|I_h|} \sum_{i_l^h \in I_h} \max_{i_k^t \in I_t} f(i_k^t, i_l^h)$$

Results when using visual denotations

System	Prec.	Rec.	Acc.
ccg2lambda + images	90.24	71.08	84.29
ccg21ambda, only text	96.95	62.65	83.13
L&H, text $+$ images	—	—	82.70
L&H, only text	_	_	81.50
Baseline (majority)	—	—	56.69

Examples

True positive:

T: The woman is picking up a kangaroo that is little.

H: The woman is picking up a baby kangaroo.

Phrasal Entailments with Visual Denotations

Examples

False positive:

T: A monkey is wading through a marsh.

H: A monkey is wading through a river.

Phrasal Entailments with Visual Denotations

Examples

False negative:

T: A boy is spanking a man with a plastic sword. H: A boy is spanking a man with a toy weapon.

Thank you!

Ran Tian, Koji Mineshima, Pascual Martínez-Gómez.

Reference I

- Ajdukiewicz, K. (1935) "Die syntaktische Konnexit/"at", *Studia Philosophica* **1**, pp.1–27.
- Bar-Hillel, Y. (1953) "A quasi-arithmetical notation for syntactic description", *Language* **29**(1), pp.47–58.
- Barwise, J. and R. Cooper. (1981) "Generalized quantifiers and natural language", *Linguistics and Philosophy* **4**(2), pp.159–219.
- Bowman, S. R., G. Angeli, C. Potts, and C. D. Manning. (2015) "A large annotated corpus for learning natural language inference", In the Proceedings of *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Association for Computational Linguistics.
- Cooper, R., R. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspers, H. Kamp, M. Pinkal, M. Poesio, S. Pulman, et al. (1994) "FraCaS A Framework for Computational Semantics", *Deliverable* **D16**.

Hobbs, J. R. (1985) "Ontological promiscuity", In the Proceedings of *Proceedings of the 23rd annual meeting on Association for Computational Linguistics*. pp.60–69.

Reference II

- Kamp, H. and U. Reyle. (1993) From discourse to logic: An introduction to modeltheoretic semantics of natural language, formal logic and DRT. Kluwer, Dordrecht.
- Kawazoe, A., R. Tanaka, K. Mineshima, and D. Bekki. (2015) "An Inference Problem Set for Evaluating Semantic Theories and Semantic Processing Systems for Japanese", In the Proceedings of *Proceedings of LENLS12*. pp.67–73.
- Marelli, M., S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli. (2014) "A SICK cure for the evaluation of compositional distributional semantic models.", In the Proceedings of *Proceedings of LREC2014*. pp.216–223.
- Mineshima, K., P. Martínez-Gómez, Y. Miyao, and D. Bekki. (2015) "Higher-order logical inference with compositional semantics", In the Proceedings of *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*. pp.2055–2061.
- Moss, L. (2014) "Natural Logic". NASSLLI 2014, Lecture slides.
- Parsons, T. (1990) Events in the Semantics of English. MIT Press.

Steedman, M. (2000) The Syntactic Process. MIT Press.

Steedman, M. (2012) *Taking scope: The natural semantics of quantifiers*. Mit Press.