The explicit calculation of Čech cohomology and an extension of Davenport’s inequality

Ran Tian

March 13, 2012

Abstract

We extend Davenport’s inequality to general elliptic curves over \(\mathbb{C}(t) \) written in Weierstrass forms. The obtained result is an effective version of a result by Voloch, and also improves a bound given by Hindry-Silverman. The method depends on an explicit calculation of the Čech cohomology of sheaves of differentials on an elliptic surface.

Keywords: Davenport’s inequality, algebraic de Rham cohomology, Manin’s map, Mordell-Weil lattice

2000MSC: 14J27, 11G05, 14F40

1 Introduction

Let \(a, b \in \mathbb{C}[t] \) be polynomials. The Weierstrass equation \(y^2 = 4x^3 - 3ax + b \) defines an elliptic curve \(E/\mathbb{C}(t) \), and for a place \(v \) of \(\mathbb{C}(t) \), we can give lower bounds of the valuation \(v(r) \) for every rational points \((x, y) = (r, s) \in E(\mathbb{C}(t)) \).

The existence of such a lower bound is proved by Manin[13, Theorem 4]:

Proposition 1 (Manin). Let \(C \) be an algebraic curve over \(\mathbb{C} \), let \(K = k(C) \) be its function field, and let \(E : y^2 = 4x^3 - 3ax + b \ (a, b \in K) \) be an elliptic curve over \(K \). Fix a \(p \in C \), then there exists an integer \(C_{a,b,p} \) such that for all \((r, s) \in E(K) \) one has \(v_p(r) \geq C_{a,b,p} \).

As pointed out by Manin[13, §11], Proposition 1 is a strong statement which easily implies Siegel’s theorem on the finiteness of integral points on an affine elliptic curve defined over a function field. In 1994, Voloch[22] noted that the following lemma together with the Mordell-Weil theorem gives a short proof of Proposition 1 (also cf. [18, Chap.III §12]).

Lemma 1. Using the notation from Proposition 1, put \(E_i = \{(r,s) \in E(K); v_p(r) \leq -2i\} \). Then \(E_i \) is a subgroup of \(E(C) \), \(E_i \supset E_{i+1} \), and \(E_i/E_{i+1} \) is torsion-free.

However, Voloch’s proof is not effective; we can ask for an explicit lower bound of \(v_p(r) \) and a nontrivial upper bound of rank \(E_i \).

We restrict to the case \(C = \mathbb{P}^1_\mathbb{C} \). Without losing genericity, we only consider the valuation \(v_\infty \) at \(t = \infty \). And to be more intuitive, we will use the notation ‘deg’ to denote
−ν_m, this is the degree of a polynomial, and for f = P/Q where P, Q are polynomials, deg f is equal to deg P − deg Q.

Then we can state the questions as:

Question 1. Let E/ℂ(t) be an elliptic curve defined by y^2 = 4x^3 − 3ax + b (a, b ∈ ℂ(t)). Give an upper bound of 1/2 deg r for every (r, s) ∈ E(ℂ(t)), using only the coefficients a, b in the Weierstrass equation.

Question 2. Give an upper bound of rank E_t where E_t = {(r, s) ∈ E(ℂ(t)); 1/2 deg r ≥ t}.

The main theorem of this paper will give an answer for these two questions.

As for Question 1, some results are known for integral points (r, s) ∈ E(ℂ(t)) where r, s ∈ ℂ[t]. The first one is Davenport’s inequality[2] in 1965:

Proposition 2 (Davenport). Let f, g ∈ ℂ[t] be polynomials and f^3 − g^2 ≠ 0. Then

\[
\frac{1}{2} \deg f + \deg g - 1
\]

Viewed as a proposition on elliptic curves over ℂ(t), Proposition 2 states

\[
\frac{1}{2} \deg r ≤ \deg h - 1
\]

for any (r, s) ∈ E(ℂ(t)) where r, s ∈ ℂ[t] and E : y^2 = x^3 + h (0 ≠ h ∈ ℂ[t]).

Stothers[20] gave a characterization of the polynomials which satisfy the equality, namely if \(\frac{1}{2} \deg f = \deg(f^3 - g^2) - 1\), then \(f^3/(f^3 - g^2)\) is a Belyi function (also cf. [9, §2.5]). And the story has been generalized by Zannier[23].

The same method used in their proof (i.e. the Riemann-Hurwitz) also can be used to give bounds for solutions of unit equations, and has been applied to general hyperelliptic curves over function fields by Mason[14], Schmidt[17], and Hindry-Silverman [8]. Restricted to the case of elliptic curves over ℂ(t), [8, Proposition 8.2] can be rephrased as:

Proposition 3 (Hindry-Silverman). Let E : y^2 = 4x^3 − 3ax + b be an elliptic curve over ℂ(t) where a, b ∈ ℂ[t] and \(Δ := a^3 − b^2\) is nonzero. Then for any (r, s) ∈ E(ℂ(t)) where r, s ∈ ℂ[t, Δ^{-1}], we have \(\deg(s^4/Δ) ≤ 24(Δ_0(Δ) - 1)\).

Here \(Δ_0(Δ)\) denotes the number of distinct zeros of Δ. For a rational function f, \(\deg(f)\) is regarded as the degree of the field extension \([ℂ(t) : ℂ(f)]\), i.e. the degree of the map to \(P_1(ℂ)\) defined by f. So obviously \(\deg f ≤ \deg(f)\).

Proposition 3 immediately implies that

\[
\frac{1}{2} \deg r ≤ 2 \deg f - 2 + \frac{1}{12} \deg Δ
\]

for any (r, s) ∈ E(ℂ(t)) where r, s ∈ ℂ[t, Δ^{-1}] and E : y^2 = 4x^3 − 3ax + b (a, b ∈ ℂ[t]).

To state the main theorem of this paper, we use the following notations:

Notation 1. Let the elliptic curve E/ℂ[t] be defined by a Weierstrass equation \(y^2 = 4x^3 − 3ax + b (a, b ∈ ℂ[t])\).

- Let \(n\) be the least integer such that \(\deg a ≤ 4n, \deg b ≤ 6n\).
• Put $\Delta = a^3 - b^2$, $\Lambda = 2b'a - 3ba'$, $\Phi = \frac{a^2 - (\Lambda')^2}{12\Delta} = \frac{1}{4}(b')^2 - \frac{3}{4}a(a')^2$.

• Put $P_2 = \Delta\Lambda, P_1 = \Lambda'\Lambda - \Delta\Lambda', R_0 = \frac{1}{12}(\Delta''\Lambda - \Delta\Lambda' + \Phi\Lambda)$.

• For $g, h \in \mathbb{C}(t)$, put $\rho(g, h) = \Delta\Lambda'h - \Delta\Lambda'h + \frac{1}{2}\Lambda'\Delta'h - 6(P_2g'' + P_1g' + P_0g)$.

• For $P, Q \in \mathbb{C}[t]$, let $[P/Q]$ and $(P \text{ MOD } Q)$ be the polynomials such that $P = [P/Q]Q + P \text{ MOD } Q$ and $\deg(P \text{ MOD } Q) < \deg Q$.

• Put $B = \{\rho(p, q) \text{ MOD } \Lambda^2; p, q \in \mathbb{C}[t]\}$.

And we make the following assumptions:

• Assume the equation is minimal, i.e. there is no nonconstant polynomial l such that a is divisible by l^4 and b is divisible by l^5.

• Assume $\Lambda \neq 0$. This is to say that the J-invariant of E is nonconstant.

Now the main theorem states:

Theorem 1. Using Notation 1, we have:

1. Put $c = \min\{\deg \beta; \beta \in B, \beta \neq 0\}$. Then for any $(r, s) \in E(\mathbb{C}(t))$,

$$\frac{1}{2} \deg r \leq \deg(\Delta \Lambda) - c - 2 \quad (3)$$

2. Put $E_i = \{(r, s) \in E(\mathbb{C}(t)); \frac{1}{2} \deg r \geq i\}$. Then:

- (a) For $c \leq j \leq 2\deg \Lambda - 1$,

$$\dim \mathbb{C}\{\beta \in B; \deg \beta \leq j\} \leq \rank_{\deg(\Delta \Lambda) - j - 2} E_{\deg(\Delta \Lambda) - j - 2}$$

- (b) For $2\deg \Lambda + n - 2 \leq k$,

$$\dim \mathbb{C}B + k \geq \rank_{\deg(\Delta \Lambda) - k - 2} E_{\deg(\Delta \Lambda) - k - 2}$$

Example 1. Consider a 'general case', where $\deg \Delta = 12n$ and $\gcd(\Delta, \Delta') = 1$. That is to say, all singular fibers of E is of type I_1 and the ∞-fiber is not singular. In this case, formula (2) gives an inequality $\frac{1}{2} \deg r \leq 25n - 2$, while (3) implies an inequality $\frac{1}{2} \deg r \geq 22n - 4$, since $c \geq 0$ and $\deg \Lambda \leq 10n - 2$. So 'in general' (3) will give a better inequality than (2).

Example 2. Consider a special case where a is a constant. Then we can verify that $\rho(p, q) \text{ MOD } \Lambda^2 = \Lambda f' - \Lambda' f$ where $f = (-\frac{1}{2}\Lambda'p - 6p'\Lambda + q\Lambda) \text{ MOD } \Lambda$. So

1. $c = \deg \Lambda + \deg \gcd(\Delta, \Delta') - 1$ and for any $(r, s) \in E(\mathbb{C}(t))$,

$$\frac{1}{2} \deg r \leq N_0(\Lambda) - 1. \quad (4)$$

2. We have:
(a) For \(0 \leq i \leq \deg \Lambda - \deg \gcd(\Delta, \Delta')\), \(\text{rank}E_{N_0(\Delta) - i} \leq i\).

(b) For \(j \geq \deg \Lambda - \deg \gcd(\Delta, \Delta')\), \(\text{rank}E_{N_0(\Delta) - n - j} \leq j\).

Example 3. Consider the equation \(E : y^2 = 4x^3 + 108x + 81r^2\). It has a solution \((x = t^6 + 6r^2, y = 2t^6 + 18r^5 + 27r)\) which shows that the inequality (4) is tight.

Note that the form of the inequality (4) coincides with Davenport’s inequality (1) if we set \(a = 0\). And Example 3 shows that this is also a tight inequality as Davenport’s inequality is. It may be interesting to ask that if there is a brief characterization of those examples which satisfy the equality, like the characterization done by Stothers?

The method used by Hindry-Silverman originates from Siegel’s reduction, which reduces the problem of integral points of elliptic curves to the problem of solutions of unit equations. It applies to integral points only. Our approach however is near to Manin’s method using Gauss-Manin connection and Manin’s map. We will see that the inequality (3) comes from the estimation of the degrees of the polynomials in the image of a \(\mathbb{C}\)-linear map \(H^1_{\text{prim}}(E, \Omega_{E, \mathbb{C}}^1) \oplus H^0(E, \Omega_{E, \mathbb{C}}^2) \twoheadrightarrow \mathbb{C}[t]\), whose restriction on the Mordell-Weil lattice[19] \(MML \subset H^1_{\text{prim}}(E, \Omega_{E, \mathbb{C}}^1)\) coincides with Manin’s map \(MML \hookrightarrow \mathbb{C}[t]\). So, if in some situation we can get a even better inequality than (3), it will also give some nontrivial restrictions on how the Mordell-Weil lattice can be embedded into \(H^1_{\text{prim}}(E, \Omega_{E, \mathbb{C}}^1)\).

In order to illustrate the idea of the proof, it may be helpful to give here some investigation on the much simpler equation \(E : y^2 = x^3 + h\) \((0 \neq h \in \mathbb{C}[t])\). I would like to begin with an extremely simple proof of Davenport’s inequality:

Proof of Proposition 2. For any \(s(t)^2 = r(t)^3 + h(t)\), we have

\[
\frac{hr' - \frac{1}{3} h'^r}{s} = \frac{(s^2 - r^3)r' - \frac{1}{3} h'^r}{s} = \frac{s^2r' - \frac{1}{3} r(3r^2r' + h')}{s} = sr' - \frac{2}{3} rs'
\]

(5)

Now assume \(\deg r > \frac{1}{2} \deg h\), then \(\deg(hr' - \frac{1}{3} h'^r) = \deg r + \deg h - 1\) and \(\deg s = \frac{1}{2} \deg r\). The left hand side of the above equality has a degree \(\deg h - 1 - \frac{1}{2} \deg r\), and the right hand side is a polynomial so has a degree \(\geq 0\). Hence \(\deg h - 1 - \frac{1}{2} \deg r \geq 0\) or \(\frac{1}{2} \deg r \leq \deg h - 1\).

The interpretation is that the magical expression \(\frac{hr' - \frac{1}{3} h'^r}{s}\) in (5) comes out from Manin’s map and has a cohomological meaning. We can calculate

\[
\frac{\partial}{\partial t} \frac{dx}{\sqrt{x^3 + h(t)}} = -\frac{1}{2} \frac{h' dx}{(x^3 + h)^{\frac{3}{2}}}
\]

and

\[
d\left(\frac{x}{\sqrt{x^3 + h}}\right) = -\frac{1}{2} \frac{dx}{\sqrt{x^3 + h}} + \frac{3}{2} \frac{h}{(x^3 + h)^{\frac{3}{2}}} dx
\]
so

\[(h \frac{\partial}{\partial t} + \frac{1}{6} h') \frac{dx}{y} = d(-\frac{1}{3} h' \frac{x}{y}), \]

thus for any \((r(t), s(t)) \in E(\mathbb{C}(t))\) of \(E : y^2 = x^3 + h\) we have

\[
(h \frac{\partial}{\partial t} + \frac{1}{6} h') \int_{r(t)}^{r'} \frac{dx}{y} = h' \frac{r'}{s} + \int_{\infty}^{r} \left(h \frac{\partial}{\partial t} + \frac{1}{6} h' \right) \frac{dx}{y} \]

\[
= h' \frac{r'}{s} + \int_{\infty}^{r} d(-\frac{1}{3} h' \frac{x}{y}) \]

\[
= h' \frac{r'}{s} - \frac{1}{3} h' \frac{r}{s},
\]

which is the content of expression (5). We know \((h \frac{\partial}{\partial t} + \frac{1}{6} h') \int_{\infty}^{r} \frac{dx}{y}\) is an entire function divisible by \(\gcd(h, h')\), and at the same time also a rational function, so it must be a polynomial of degree \(\geq \deg \gcd(h, h')\). This way we get a slightly stronger version of Davenport’s inequality:

Proposition 4. Let \(E : y^2 = x^3 + h\) be given by a minimal equation. Then for any \((r, s) \in E(\mathbb{C}(t))\) we have \(\frac{1}{2} \deg r \leq N_0(h) - 1\).

Proof. Since the equation is minimal we have \(\frac{1}{6} \deg h \leq N_0(h) - 1\). Then the same argument as in the proof of Proposition 2, comparing the degree of the two sides of (6) instead of (5), gives the statement. \(\square\)

Now regard \(E : y^2 = x^3 + h(t)\) as a smooth proper elliptic fibration over the affine curve \(A = \text{Spec} \mathbb{C}[t, h^{-1}]\), denote the 0-section of \(E\) by \(\sigma\), the normal bundle of \(\sigma\) by \(\mathcal{N}\). The \(J\)-invariant of \(E\) is constant, so \(\mathcal{N}\) is in fact a locally constant line bundle, we denote the associated locally constant sheaf by \(\mathcal{C}_{\mathcal{N}}\). The relative 1-form \(\frac{dt}{Y}\) can be viewed as a nonvanishing section of the dual bundle of \(\mathcal{N}\), so its dual \((\frac{dt}{Y})^*\) is a nonvanishing section of \(\mathcal{N}\). Then it is not hard to realize that the expression \(\{(h \frac{\partial}{\partial t} + \frac{1}{6} h') \int_{r}^{s} \frac{dx}{y}\} dt(\frac{dt}{Y})^*\) for a section \((r, s) \in E(\mathbb{C}(t))\) represents an element in the cohomology group \(H^1(A_{\mathbb{C}}, \mathcal{C}_{\mathcal{N}})\) corresponding to \(s - \sigma\). (Here \(A_{\mathbb{C}}\) is the associated complex analytic space of \(A\).) Elements corresponding to some \(s - \sigma\) form a lattice of a subspace of \(H^1(A_{\mathbb{C}}, \mathcal{C}_{\mathcal{N}})\), on the other hand \((h \frac{\partial}{\partial t} + \frac{1}{6} h') \int_{\infty}^{r} \frac{dt}{Y}\) is a polynomial divisible by \(\gcd(h, h')\), and the vector space of such polynomials whose degree \(\leq \deg(\gcd(h, h')) + i - 1\) only has a \(\mathbb{C}\)-dimension \(i\), so we conclude:

Proposition 5. Let \(E : y^2 = x^3 + h\) be given by a minimal equation. Then put \(E_i = \{(r, s) \in E(\mathbb{C}(t)) ; \frac{1}{2} \deg r \geq N_0(h) - i\}\) we have \(\text{rank} E_i \leq 2i\).

To extend the above story to general elliptic curves over \(\mathbb{C}(t)\), we should use a differential operator of order 2 instead of the operator \((h \frac{\partial}{\partial t} + \frac{1}{6} h')\), since the \(J\)-invariant is no longer constant. The proof of the main theorem follows the steps:

1. Find the differential operator \(P\) which annihilates the relative 1-form \(\frac{dt}{Y}\).

2. For \((r, s) \in E(\mathbb{C}(t))\), calculate the degree of \(P \int_{\infty}^{r} \frac{dt}{Y}\).
3. Find a cohomological interpretation of the expression $P \int_{\gamma} \frac{dz}{y}$.

4. Explicitly calculate the cohomology of E.

Step 1 and 2 are elementary calculus. We will relate the expression $P \int_{\gamma} \frac{dz}{y}$ to the algebraic de Rham cohomology of E viewed as an elliptic surface, and deal with it via an explicit calculation of the Čech cohomology of sheaves of differentials.

It seems to me that the method using explicit calculation of Čech cohomology is not yet widely used, so the article also intends to be a summary and introduction to such calculations. It may be thought as difficult when dealing with Čech cohomology, that the localization A_f of a ring A along f is generally not finitely generated as an A-module. We avoid this problem by connecting the Čech complex to a finitely generated complex via a bicomplex. This idea is near the one called “eyeballing” in [4], however the main concern of [4] is on the computation of the $\bigoplus_n H^0(\mathcal{F}(n))$ for a coherent sheaf \mathcal{F} on \mathbb{P}^r, explicit computation of Čech cohomology is not considered there. On the other hand it is noted in [16] that localization is finitely generated when viewed as a D-module, so we can deal with it using gröbner basis for Weyl algebras. Some difficulty coming from the non-commutativity should be overcome, and an algorithm to calculate the de Rham cohomology of the complement of an affine variety is given in [16]. The methods used in this paper however take another approach.

The paper is organized into 7 sections. In § 2 we will briefly review the formalization of Gauss-Manin connection and Manin’s map, then step 1 and step 2 mentioned above will be done. In § 3 we will discuss the relationship between Manin’s map and the algebraic de Rham cohomology, which forms the very essence of this paper. In § 4 we prove the main theorem, leaving a calculation result on the algebraic de Rham cohomology of the elliptic surface unproved, and this key lemma will be proved in § 7, after some generic consideration in § 5 on how the Čech cohomology of a coherent sheaf of a projective scheme can be calculated, and in § 6 how the free resolutions of the sheaves of differentials of a hypersurface can be constructed. In § 7 we do the actual calculation, which completes the proof and also serves as an example of § 5 and § 6.

2 Gauss-Manin connection and Manin’s map

In this section, we will reveal that the polynomials P_2, P_1, P_0 in Notation 1 are coefficients of the Picard-Fuchs equation of the elliptic curve $E/\mathbb{C}(t)$. Then we note the important fact that in almost cases, for a section $s = (r, s) \in E(\mathbb{C}(t))$, the degree of Manin’s map $\deg \mu(s)$ is related to $\deg r$ by $\deg \mu(s) = -\frac{1}{2} \deg r + \deg(\Delta \Lambda) - 2$.

We begin with a review on Gauss-Manin connection and Manin’s map, following the formalization in [13]. Let K be a function field over \mathbb{C} and endowed with a derivation ∂ (In our case, $K = \mathbb{C}(t)$ and $\partial = \frac{d}{dt}$), L a function field over K (In our case $L = K(x, y), y^2 = 4x^3 - 3ax + b$) and for simplicity assume that L/K is of transcendence degree 1. Furthermore assume that there exists a K-rational point on the curve L/K. Choose a transcendence base $x \in L$ (In our case we choose $x \in K(x, y)$). Denote by ∂_t the unique derivation of L which extends ∂ and satisfies $\partial_t x = 0$. Let $\Omega_{L/K}$ be the L-module of relative 1-forms. Then ∂_t acts on $\Omega_{L/K}$ by $\partial_t(udx) = (\partial_t u)dx$. Let
$B, Z \subset \Omega_{L/K}$ be the K-subspace of exact and closed forms, respectively. Since we have assumed that L/K is of transcendence degree 1, in this case we have $Z = \Omega_{L/K}$ and $B = d(L)$. Then the induced action of ∂_i on Z/B turns out to be independent of the choice of the transcendence base x. Thus Z/B can be viewed as a $K[\partial]$-module, the action of ∂ is called the Gauss-Manin connection.

Let $(\omega_1, \ldots, \omega_g)$ be a K-basis of the relative 1-forms of the first kind of L/K (Here g is the genus of L/K, and in our case $g = 1$). Denote by ω_i the classes of ω_i in Z/B. A Picard-Fuchs equation \mathcal{P} is any relation of the form

$$\mathcal{P} : \sum_{i=1}^{g} P_i \omega_i = 0, \ P_i \in K[\partial].$$

And if we choose a transcendence base $x \in L$ of L/K, \mathcal{P} has a representation in the form

$$\sum_{i=1}^{g} P_i \omega_i = dz_i, \ P_i \in K[\partial], z_i \in L.$$

The set of all Picard-Fuchs equations is a submodule of the left $K[\partial]$-module $K[\partial]^{g \times g}$, thus is finitely generated. This module, up to isomorphism, obviously does not depend on the choice of the K-basis $(\omega_1, \ldots, \omega_g)$. In our case $g = 1$, the module of all Picard-Fuchs equations is a left ideal of $K[\partial]$, with respect to a chosen relative 1-form ω of the first kind (In our case the relative 1-form dx is chosen). Any left ideal of $K[\partial]$ is a principle ideal. When assuming that the J-invariant is not constant, this generator should be an operator of order 2. So there should be no ambiguity, up to a multiple of K, for us to indicate the Picard-Fuchs equation of order 2.

Now let $\kappa : V \to C$ be a model of L/K, and let o be a fixed K-rational point of V. For any Picard-Fuchs equation $\mathcal{P} : \sum_{i=1}^{g} P_i \omega_i = 0$ with respect to a K-basis $(\omega_1, \ldots, \omega_g)$ of the relative 1-forms of the first kind, Manin’s map $\mu_\mathcal{P}$ assign an element of K to every K-rational point s of V, namely

$$\mu_\mathcal{P}(s) = \sum_{i=1}^{g} P_i \int_{s}^{o} \omega_i$$

which can be perfectly defined using only an algebraic language. In the $g = 1$ case, we can omit the suffix \mathcal{P} and always regard the Picard-Fuchs equation as the generator of order 2. In this case choosing a transcendence base x of L/K and a relative 1-form udx of the first kind, the Picard-Fuchs equation has a representation

$$(\partial_x^2 + a \partial_x + b)udx = dw, \ a, b \in K, w \in L$$

and we can choose w to be such that w_o, the value of w at o, is 0. Then for any K-point s we have

$$\mu(s) = w_s + au_s \partial x_s + (\partial u_s) \partial v_s + \partial (u_s \partial x_s).$$

The main point of Manin’s map is that it transforms the rather intractable additions of Abelian integrals in the Jacobian variety into additions of K. When considering about its relation with cohomologies, at a first eye it seems that there is no reason
for us to take only relative 1-forms of the first kind. In fact we can take relative 1-forms \(\eta_1, \ldots, \eta_g \) of the second kind (i.e. meromorphic differentials with no residues) such that \((\bar{\omega}_1, \ldots, \bar{\omega}_g, \bar{\eta}_1, \ldots, \bar{\eta}_g)\) forms a basis of \(H^1(f; \mathbb{C}) \) for generic fiber \(f \) of \(\kappa \).

Then the action of the Gauss-Manin connection \(\partial \) can be restricted to the \(K \)-subspace \(W \subset Z/B \) generated by \((\bar{\omega}_1, \ldots, \bar{\omega}_g, \bar{\eta}_1, \ldots, \bar{\eta}_g)\). So \(\partial(W) \subset W \) and there is a matrix \(A \) with coefficients in \(K \) such that

\[
\partial \left(\bar{\eta}_1 \cdots \bar{\eta}_g \bar{\omega}_1 \cdots \bar{\omega}_g \right) = \left(\bar{\eta}_1 \cdots \bar{\eta}_g \bar{\omega}_1 \cdots \bar{\omega}_g \right) A.
\]

A Picard-Fuchs equation is just a relation obtained from eliminating \(\bar{\eta}_i \) in the above system of relations of order 1, and the \(\mathbb{C} \)-vector space \(W/\partial(W) \) has a natural map to the cohomology group \(\lim_{U \to \mathbb{C}} H^1(U, \mathbb{R}^1 \kappa_* \mathbb{C}) \), where \(U \subset \mathbb{C} \) runs over all Zariski open sets of the base curve \(C \).

Nevertheless, as we will see in the next section, the effect of using a relative 1-form of the first kind turns out to be clear, when considering with algebraic de Rham cohomology. In the remaining of this section we will actually calculate the Picard-Fuchs equation, Manin’s map and its degree.

Lemma 2. Using Notation 1, put \(K = \mathbb{C}(t) \) and \(L = K(x, y) \). Let \(\partial_x \) be the extension of \(\partial_t \) to \(L \) such that \(\partial_x x = 0 \), and let \(d : L \to \Omega_{L/K} \) be the relative differential. Denote the equivalence relation in \(\Omega_{L/K}/d(L) \) by ‘\(\sim \)’. Then

\[
(P_2 \partial_x \partial_x + P_1 \partial_x + P_0) \frac{dx}{y} \sim 0.
\]

Proof. Put \(\omega = \frac{dx}{y} \). Since \(d(\frac{1}{y}) = -3a \frac{dx}{y^3} + \frac{3}{2} b \frac{dx}{y^2} - \frac{1}{2} \frac{dx}{y} \) we have

\[
\omega \sim -6a \frac{dx}{y^3} + 3b \frac{dx}{y^2}.
\]

Now

\[
\partial_x \omega = \frac{3}{2} a \frac{dx}{y^3} + \frac{1}{2} b \frac{dx}{y^3}.
\]

Put

\[
\eta = 6b \frac{dx}{y^3} - 3a x \frac{dx}{y^3}.
\]

Then it is easy to see that

\[
12 \Delta \partial_x \omega \sim \Lambda \eta - \Lambda' \omega.
\]

Using \(d(\frac{1}{y}) = -18 \frac{x^2 dx}{y^5} + \frac{2}{3} a \frac{dx}{y} \) we have

\[
\frac{x^2 dx}{y^5} \sim \frac{1}{4} a \frac{dx}{y^3}.
\]

And using \(d(\frac{1}{y}) = -9a \frac{dx}{y^3} + \frac{2}{3} b \frac{dx}{y} - \frac{7}{3} \frac{dx}{y} \) we have

\[
\frac{a dx}{y^3} \sim - \frac{1}{2} b \frac{dx}{y^3} + \frac{7}{18} \frac{dx}{y^3}.
\]
From \(d\left(\frac{2}{y^3}\right) = -9ax^2y^3 + \frac{9}{2}bx^2y^3 - \frac{3}{2}xdx\) we get
\[
\frac{b}{y^3}xdx \approx 2a\frac{x^2dx}{y^3} + \frac{1}{2}a^2\frac{xdx}{y^3} + \frac{5}{9}\frac{xdx}{y^3}.
\]

So
\[
\partial x \eta = 27ba^3\frac{x^3dx}{y^3} - (9bb' + \frac{27}{2}a^2'a')\frac{x^2dx}{y^3} + \frac{9}{2}a^2b^2\frac{xdx}{y^3} + 6b'\frac{xdx}{y^3} - 6aa'\frac{xdx}{y^3}
\]
\[
\approx b'^{3}\frac{xdx}{y^3} - \frac{3}{4}aa'dx.
\]

Then we can check that
\[
12\Delta \partial x \eta \approx \Delta' \eta - a\Lambda\omega.
\]

So the statement is proved by eliminating \(\eta\) from (7) and (8).

It turns out that the operator \(P_2^2 + P_1 + P_0\) almost preserves the degree.

Lemma 3. Let \(g\) be a meromorphic function on a neighborhood of \(t = \infty\). Then in the following cases \(\deg(P_2g'' + P_1g' + P_0g) < \deg(\Delta\Lambda) + \deg g - 2\):

- The \(\infty\)-fiber of \(E\) is nonsingular and \(\deg g = -n\)
- The \(\infty\)-fiber of \(E\) is nonsingular and \(\deg g = -11n + \deg \Lambda + 1\)
- The \(\infty\)-fiber of \(E\) is of type \(I_m\) \((m \geq 1)\) and \(\deg g = -n\)

Otherwise we have \(\deg(P_2g'' + P_1g' + P_0g) = \deg(\Delta\Lambda) + \deg g - 2\).

Proof. Denote the leading coefficients of \(\Delta, \Lambda, g\) by \(c_\Delta, c_\Lambda, c_g\), respectively. According to the definition of \(P_2, P_1, P_0\), we will first reveal some relations among \(\deg \Delta, \deg \Lambda\) and \(\deg \Phi\).

(i) From the identity \(a^2\Lambda = 2b'\Delta - b\Delta'\) and \(b\Delta = 3a'd\Delta - a\Delta'\) we get
\[
\deg \Lambda \leq \deg \Delta - 1 + \deg b - 2\deg a
\]
\[
\deg \Lambda \leq \deg \Delta - 1 + \deg a - \deg b
\]

Then eliminate \(\deg a\) and \(\deg b\) respectively, we get
\[
\deg \Lambda \leq \deg \Delta - 1 - \frac{1}{3}\deg b
\]
\[
\deg \Lambda \leq \deg \Delta - 1 - \frac{1}{2}\deg a
\]

Now by the definition of \(n\) we have either \(\deg a \geq 4n - 3\) or \(\deg b \geq 6n - 5\), any case the inequalities above will imply
\[
\deg \Lambda \leq \deg \Delta - 2n
\]

and the equality holds if and only if \(\deg a = 4n - 2, \deg b = 6n - 3\) and \(\deg \Delta = 12n - 6\). This is to say that the \(\infty\)-fiber is of type \(I_m\) \((m \geq 1)\). For the notation of singular fiber types of elliptic fibrations, cf. [12] or [18, Chap.IV §8].
(ii) Using the definition \(\Phi = \frac{a^2 - (\Delta')^2}{12\Delta} \), by (9) we see that \(\deg \Phi \leq \deg \Delta - 2 \), and if \(\deg(a^2) < 2\deg(\Delta') \), then the coefficient of \(\Phi \) at degree \(\deg \Delta - 2 \) is simply

\[
-\frac{1}{12}(\deg \Delta)^2 c_\Delta.
\]

On the other hand we have \(\deg(a^2) = 2\deg(\Delta') \) in the following cases:

(a) \(\deg a = 4n - 2 \), \(\deg b = 6n - 3 \), \(\deg \Delta \neq 12n - 6 \) and \(\deg \Lambda = \deg \Delta - 2n \), the \(\infty \)-fiber is of type \(I_m^* (m \geq 1) \):

In this case, from the identity

\[
a^2 = \left(\frac{b'}{b} \Delta - \Delta' \right) \left(\frac{3a'}{a} \Delta - \Delta' \right),
\]

we see that the coefficient of \(\Phi \) at degree \(\deg \Delta - 2 \) is

\[
\frac{1}{12} \left\{ (2\deg b - \deg \Delta)(3\deg a - \deg \Delta) - (\deg \Delta)^2 \right\} c_\Delta
\]

\[
= \frac{1}{12} \left\{ (12n - 6 - \deg \Delta)^2 - (\deg \Delta)^2 \right\} c_\Delta
\]

(b) \(\deg \Lambda = \deg \Delta - 2n - 1 \) and \(\deg a = 4n \):

In this case \(\deg \Delta \neq 12n \) since \(\deg \Lambda \leq 10n - 2 \). By \(b\Lambda = 3a'\Delta - a\Delta' \) we get \(\deg b = 6n \). This is to say that the \(\infty \)-fiber is of type \(I_m (m \geq 1) \). Now similar to (a) we can calculate the coefficient of \(\Phi \) at degree \(\deg \Delta - 2 \) to be

\[
\frac{1}{12} \left\{ (12n - \deg \Delta)^2 - (\deg \Delta)^2 \right\} c_\Delta.
\]

(iii) From (ii) we see that \(\deg P_0 \leq \deg(\Delta \Lambda) - 2 \), thus

\[
\deg(P_2g'' + P_1g' + P_0g) \leq \deg(\Delta \Lambda) + \deg g - 2.
\]

And if \(\deg(a^2) < 2\deg(\Delta') \) i.e. the coefficient of \(\Phi \) at degree \(\deg \Delta - 2 \) is

\[
-\frac{1}{12}(\deg \Delta)^2 c_\Delta,
\]

we can calculate the coefficient of \(P_2g'' + P_1g' + P_0g \) at degree \(\deg(\Delta \Lambda) + \deg g - 2 \) to be

\[
(\deg g + \frac{1}{12} \deg \Delta)(\deg g + \frac{11}{12} \deg \Delta - \deg \Lambda - 1)c_\Lambda c_g.
\]

Otherwise,

(a) If the \(\infty \)-fiber is of type \(I_m^* (m \geq 1) \), the coefficient of \(P_2g'' + P_1g' + P_0g \) at degree \(\deg \Delta \Lambda + \deg g - 2 \) is

\[
(\deg g + n - \frac{1}{2})^2 c_\Lambda c_g.
\]

(b) If the \(\infty \)-fiber is of type \(I_m (m \geq 1) \), the coefficient of \(P_2g'' + P_1g' + P_0g \) at degree \(\deg \Delta \Lambda + \deg g - 2 \) is

\[
(\deg g + n)^2 c_\Lambda c_g.
\]

10
So the possibilities for this coefficient to be 0 are listed in the statement.

We can also similarly prove the following, which will be used later:

Lemma 4. Fix a \(w \in \mathbb{C} \). For a function \(g \) meromorphic on a neighborhood of \(t = w \), denote the order of zeros of \(g \) at \(t = w \) by \(\text{ord}_w g \). In the following cases we have \(\text{ord}_w (P_2 g'' + P_1 g' + P_0 g) > \text{ord}_w (\Delta A) + \text{ord}_w g - 2 \):

- The \(w \)-fiber of \(E \) is nonsingular and \(\text{ord}_w g = 0 \)
- The \(w \)-fiber of \(E \) is nonsingular and \(\text{ord}_w g = \text{ord}_w \Lambda + 1 \)
- The \(w \)-fiber of \(E \) is of type \(\Lambda = \text{ord}_w g - 2 \).

Otherwise we have \(\text{ord}_w (P_2 g'' + P_1 g' + P_0 g) = \text{ord}_w (\Delta A) + \text{ord}_w g - 2 \).

Proof. Totally parallel to the proof of Lemma 3. Notice that the Weierstrass equation is minimal, so we have either \(\text{ord}_w a \leq 3 \) or \(\text{ord}_w b \leq 5 \), and \(\text{ord}_w \Lambda \geq \text{ord}_w \Delta - 2 \).

Now by Lemma 2, we can take the Picard-Fuchs equation to be \(P_2 \frac{\partial}{\partial t} + P_1 \frac{\partial}{\partial t} + P_0 \) with respect to \(\frac{dx}{Y} \). Then for \(s = (r, s) \in E(K) \), Manin’s map is by definition

\[
\mu(s) = (P_2 \frac{\partial}{\partial t} + P_1 \frac{\partial}{\partial t} + P_0) \int_{\sigma}^{x} \frac{dx}{y}.
\]

Proposition 6. For a section \(\sigma = (r, s) \in E(\mathbb{C}(t)) \), assume \(\frac{1}{2} \deg r > n \). Then we have \(\deg \mu(s) \leq 2 \deg \Lambda + n - 2 \) if \(\deg \Lambda = 12n \) and \(\frac{1}{2} \deg r = 11n + \deg \Lambda - 1 \), otherwise \(\deg \mu(s) = -\frac{1}{2} \deg r + \deg(\Delta \Lambda) - 2 \).

Proof. The \(\infty \)-model of \(E \) is \(E_{\infty} : y_{\infty}^2 = 4x_{\infty}^3 - 3a_{\infty}x_{\infty} + b_{\infty} \) where

\[
x_{\infty} = t^{-2}x, \quad y_{\infty} = t^{-3}y, \quad a_{\infty} = t^{-4a}, \quad b_{\infty} = t^{-6b}.
\]

For a section \(\sigma = (r, s) \in E(\mathbb{C}(t)) \), if \(\frac{1}{2} \deg r > n \) then \(\sigma \) intersects the \(0 \)-section \(\sigma \) at \(t = \infty \) with a multiplicity \(\frac{1}{2} \deg r - n \), which means that we can choose a branch of the multivalued function \(\int_{\sigma}^{x} \frac{dx}{y} \) holomorphic on a neighborhood of \(t = \infty \) which vanishes at \(t = \infty \) of order \(\frac{1}{2} \deg r - n \). Now \(f_{\sigma}^{s} \frac{dx}{Y} = t^{-n} \int_{\sigma}^{s} \frac{dx}{y} \) so we can choose a branch of \(f_{\sigma}^{s} \frac{dx}{Y} \) of degree \(-\frac{1}{2} \deg r \). Then apply Lemma 3 and we are done.

3 Algebraic de Rham cohomology

In this section we give a cohomological interpretation of Manin’s map. I would like to give a brief description at the beginning, and then show the details. We use the following notation:

Notation 2. Using Notation 1, and

- Let \(\tilde{E} \) be the minimal proper regular model of \(E \).
• Denote by \(\kappa : \tilde{E} \to \mathbb{P}^1_C \) the elliptic fibration.

• Put \(A = \text{Spec} \mathbb{C}[t, \Delta^{-1}] \) and \(E_\Delta = \kappa^{-1}A \).

• Let \(f \) be the generic fiber of \(\kappa \).

• Let \(s \) be a section, and let \(\partial \) be the 0-section.

• Put \(H^1_{prim}(\tilde{E}, \Omega^1_{\tilde{E}}) = \{ c \in H^1(\tilde{E}, \Omega^1_{\tilde{E}}) : c \cdot f = 0 \} \), where \(c \cdot f \) denotes the intersection product.

Lemma 5. \(\text{Im}(H^1_{prim}(\tilde{E}, \Omega^1_{\tilde{E}}) \to H^1(E_\Delta, \Omega^1_{E_\Delta})) \subset \text{Im}(H^1(E_\Delta, \kappa^* \Omega^1_A) \to H^1(E_\Delta, \Omega^1_{E_\Delta})) \).

Proof. For any \(c \in H^1_{prim}(\tilde{E}, \Omega^1_{\tilde{E}}) \), restrict \(c \) to any fiber \(f \subset E_\Delta \) of \(\kappa \), then by definition we have \(0 = c|_f \in H^1(f, \Omega^1_\Delta) \). This means that \(c \) is 0 when viewed as an element of \(H^0(A, R^1 \kappa_* \Omega^1_{E_\Delta/A}) \), and thus is 0 in \(H^1(E_\Delta, \Omega^1_{E_\Delta/A}) \). Then the exact sequence \(H^1(E_\Delta, \kappa^* \Omega^1_A) \to H^1(E_\Delta, \Omega^1_{E_\Delta}) \to H^1(E_\Delta, \Omega^1_{E_\Delta/A}) \) induced from \(0 \to \kappa^* \Omega^1_A \to \Omega^1_{E_\Delta} \to \Omega^1_{E_\Delta/A} \to 0 \), implies the lemma.

For any \(c \in H^1_{prim}(\tilde{E}, \Omega^1_{\tilde{E}}) \), we take its correspondence \(\tilde{u} \in H^0(A, R^1 \kappa_* \mathcal{C} \otimes \mathcal{O}_A) \) along the diagram:

\[
\begin{array}{c}
H^1_{prim}(\tilde{E}, \Omega^1_{\tilde{E}}) \\
\downarrow \\
H^1(E_\Delta, \Omega^1_{E_\Delta}) \\
\uparrow \\
H^1(E_\Delta, \kappa^* \Omega^1_A) \xrightarrow{\sim} H^0(A, R^1 \kappa_* \kappa^* \Omega^1_A) \to H^0(A, R^1 \kappa_* \mathcal{C} \otimes \Omega^1_A) \\
= H^0(A, R^1 \kappa_* \mathcal{C} \otimes \mathcal{O}_A) \cdot dt
\end{array}
\]

and define a map \(\tilde{\mu} : H^1_{prim}(\tilde{E}, \Omega^1_{\tilde{E}}) \to \mathbb{C}(t) \) by

\[
\tilde{\mu}(c) = P_2(\tilde{u} \circ \partial \omega) + (P_2 \frac{\partial}{\partial t} + P_1)(\tilde{u} \circ \omega)
\]

where

\[
\circ : H^0(A, R^1 \kappa_* \mathcal{C} \otimes \mathcal{O}_A) \times H^0(A, R^2 \kappa_* \mathcal{C} \otimes \mathcal{O}_A) \to H^0(A, R^2 \kappa_* \mathcal{C} \otimes \mathcal{O}_A) \cong H^0(A, \mathcal{O}_A)
\]

is the cup product and

\[
\partial : H^0(A, R^1 \kappa_* \mathcal{C} \otimes \mathcal{O}_A) \to H^0(A, R^1 \kappa_* \mathcal{C} \otimes \mathcal{O}_A)
\]

is the Gauss-Manin connection. This map is rather straightforward if we represent it using the algebraic de Rham cohomology. We will prove that Manin’s map \(\mu(s) \) coincides with \(\tilde{\mu}(c(\mathcal{O}_E(s - \omega))) \) where \(c(\mathcal{O}_E(s - \omega)) \) is the Chern class of \(\mathcal{O}_E(s - \omega) \).

Now to show the details, we begin with a review on the algebraic de Rham cohomology. Let \(X \) be a separated scheme, and let \(\mathcal{U} = (U_i)_{i \in I} \) be an open affine covering
of X, where I is a finite set endowed with a well-ordering. For any $i_0 \ldots i_p \in I$, denote by $U_{i_0 \ldots i_p}$ the intersection $U_{i_0} \ldots \cap U_{i_p}$, for a coherent sheaf \mathcal{F} on X, put

$$C^p(\mathcal{U}, \mathcal{F}) = \bigoplus_{i_0 < \ldots < i_p \in I} \mathcal{F}(U_{i_0 \ldots i_p})$$

and define a coboundary map $\delta : C^p \to C^{p+1}$ by setting

$$\delta(\alpha)_{i_0 \ldots i_{p+1}} = \sum_{k=0}^{p+1} (-1)^k \alpha_{i_0 \ldots \hat{i}_k \ldots i_{p+1}}|_{U_{i_0 \ldots i_{p+1}}}$$

Then $C(\mathcal{U}, \mathcal{F})$ forms a complex whose cohomology is called the Čech cohomology and denoted by $H^*(X, \mathcal{F})$ (cf. [7]).

Now let X be a nonsingular variety over \mathbb{C}. The algebraic de Rham cohomology is the total cohomology of the following bicomplex $\mathcal{A}(X)$:

$$C(X, \Omega^0_X) \xrightarrow{d} C(X, \Omega^1_X) \to \ldots \to C(X, \Omega^r_X) \to \ldots$$

Here $C(X, \Omega^i_X)$ is the Čech complex for the sheaf Ω^i_X, and $\Omega^0_X = \mathcal{O}_X$, $\Omega^i_X = \wedge^i \Omega_X|_X$. d is the exterior differential map. It is known that the algebraic de Rham cohomology is isomorphic to the singular cohomology $H^*(X, \mathbb{C})$ (cf. [6], also [10]). When X is projective, this fact can be easily shown by the GAGA principle and Hodge’s decomposition of $H^*(X, \mathbb{C})$, via a filtration $F^0 \mathcal{A} \supset F^1 \mathcal{A} \supset \ldots \supset F^r \mathcal{A}$ called the Hodge filtration defined by

$$F^i \mathcal{A} = (C(X, \Omega^0_X) \to C(X, \Omega^1_X) \to \ldots)$$

In particular when X is projective, the spectral sequence associated to the Hodge filtration degenerates at the E^1-level.

For a smooth morphism $\kappa : X \to Y$ of nonsingular varieties over \mathbb{C}, fix an open affine covering $\mathcal{Y} = \{ V_i \}_{i \in I}$ of Y and an open covering $\mathcal{U} = \{ U_i \}_{i \in I}$ of X such that for any $i \in I$ and $j \in J$, $U_i \cap \kappa^{-1} V_j$ is affine (it itself needs not to be affine, it can be taken as $\mathcal{U} = \{ X \}$ when κ is an affine morphism, or as $U_i = \{ X \neq 0 \}$ when κ is projective and factors through $\text{Proj} \mathcal{O}_Y[X_0, \ldots, X_r]$). Denote by $\kappa_{U_i \to V_j}$ the open affine covering of $\kappa^{-1} V_{j_0 \ldots j_p}$ which is the restriction of \mathcal{U} on $\kappa^{-1} V_{j_0 \ldots j_p}$, note that the total cohomology of the following bicomplex $\mathcal{C}(X, \mathcal{F})$ also gives the Čech cohomology $H^*(X, \mathcal{F})$:

$$\bigoplus_{j_0 \in J} C(\mathcal{U}_{j_0}, \mathcal{F}) \to \ldots \to \bigoplus_{j_0 \ldots < j_p \in J} C(\mathcal{U}_{j_0 \ldots j_p}, \mathcal{F}) \to \ldots$$

And if we regard the Čech complex $C(X, \Omega^i_X)$ in the algebraic de Rham bicomplex $\mathcal{A}(X)$ as this bicomplex $\mathcal{C}(X, \Omega^i_X)$ (thus $\mathcal{A}(X)$ becomes a “tricomplex”), we will have two filtrations of $\mathcal{A}(X)$, one is induced from a filtration of the Čech bicomplex $\mathcal{C}(X, \mathcal{F})$:

$$G^k \mathcal{C}(X, \mathcal{F}) = (\bigoplus_{j_0 \ldots < j_p \in J} C(\mathcal{U}_{j_0 \ldots j_p}, \mathcal{F}) \to \bigoplus_{j_0 \ldots < j_{k+1} \in J} C(\mathcal{U}_{j_0 \ldots j_{k+1}}, \mathcal{F}) \to \ldots)$$
and the other one is induced from a filtration of the sheaf \(\Omega^1_X \):

\[
L^j \Omega^k_X = \text{Im}(\kappa^* \Omega^1_X \otimes \Omega^{k-j}_X \to \Omega^k_X).
\]

Then the filtration

\[
T^{j, \alpha} = \sum_{k+l=i} C^k \alpha \cap L^j \alpha
\]

induces a spectral sequence whose \(E^1 \) and \(E^2 \) terms are

\[
E^1 = \bigoplus_{i,k,l,j_0<...<j_k} \Gamma(V_{j_0-\cdots-j_k}, \Omega^i \otimes R^l \kappa_* \mathbb{C}),
E^2 = \bigoplus_{i,j} H^j(Y, R^l \kappa_* \mathbb{C})
\]

This is the Leray-Hirsch spectral sequence associated to the morphism \(\kappa : X \to Y \). When \(Y \) is affine and \(\mathcal{O} = \{ Y \} \), the differential \(d^1 : E^1 \to E^1 \) can be viewed as the Gauss-Manin connection. (cf. [11])

Now let \(X \) be a nonsingular variety over \(\mathbb{C} \), \(\mathcal{L} \) an invertible sheaf over \(X \), and let \(\kappa : S \to X \) be the geometric \(\mathcal{C}^* \)-bundle associated to \(\mathcal{L} \). The Chern class \(c(\mathcal{L}) \) is by definition the image of \(1 \in H^0(X, R^1 \kappa_* \mathbb{Z}) \) under the map \(d^2 : H^0(X, R^1 \kappa_* \mathbb{Z}) \to H^2(X, R^0 \kappa_* \mathbb{Z}) \), where \(d^2 \) is the differential \(d^2 : E^2 \to E^2 \) in the Leray-Hirsch spectral sequence associated to \(\kappa : S \to X \). Thus the Chern class can be calculated as an element of the algebraic de Rham cohomology, using our description on the Leray-Hirsch spectral sequence as above. When \(\mathcal{L} \) is given by an open affine covering \(\mathcal{U} = \{ U_i \}_{i \in I} \) of \(X \) and the transformation functions \(f_{ij} \in \Gamma(U_i \cap U_j, \mathcal{O}_X^*) \), it can be verified that \(c(\mathcal{L}) \) is defined by an element in \(C^1(\mathcal{O}, \Omega^*_X) \) as \(c(\mathcal{L})|_{U_i} = \frac{1}{\text{det}(f_{ij}/f_{ij})} \). When we have a divisor \(D \) on \(X \), it is easy to construct the invertible sheaf \(\mathcal{O}_X(D) \) associated to \(D \), then the Chern class \(c(\mathcal{O}_X(D)) \) is the cohomology class corresponding to \(D \) under the Poincaré duality.

I would like to rephrase the above general principles to fit the situation we are now considering. We will focus on \(F^1Z^2_{\text{DR}}(E) \), \(F^1 \mathcal{H}^2_{\text{DR}}(E) \), where \(Z^2_{\text{DR}}(\cdot) \) denotes the set of dimension 2 cocycles in the algebraic de Rham bicomplex, \(\mathcal{H}^2_{\text{DR}}(\cdot) \) the dimension 2 algebraic de Rham cohomology group, and \(F^0 \cap F^1 \cap F^2 \) is the Hodge filtration. For an affine open covering \(\mathcal{U} \) of \(E \), we write down the bicomplex here:

\[
\begin{array}{ccccccccc}
C^2(\mathcal{U}, \mathcal{O}_{E_A}) & \longrightarrow & \cdot \\
\uparrow & & \\
C^1(\mathcal{U}, \mathcal{O}_{E_A}) & \longrightarrow & C^1(\mathcal{U}, \Omega^1_{E_A}) & \longrightarrow & \cdot \\
\uparrow & & \uparrow \delta & & \uparrow \\
C^0(\mathcal{U}, \Omega^1_{E_A}) & \longrightarrow & C^0(\mathcal{U}, \Omega^2_{E_A})
\end{array}
\]

Notation 3. Suffix like \(d'_j \) denotes a Čech \(i \)-cochain of differential \(j \)-forms.

Thus an element in \(F^1Z^2_{\text{DR}}(E) \) is \(\mu^1_1 + \mu^0_2 \in C^1(\mathcal{U}, \Omega^1_{E_A}) \otimes C^0(\mathcal{U}, \Omega^2_{E_A}) \) such that \(\delta \mu^1_1 = 0 \) and \(d \mu^1_1 = \delta \mu^0_2 \) (and, of course trivially, \(d \mu^0_2 = 0 \)). We define an equivalence relation in \(F^1Z^2_{\text{DR}}(E) \):
Definition 1. For \(\mu, v \in F^1\mathcal{T}^2(E_A) \), we write \(\mu \simeq v \) if there exists an element \(\sigma^0_1 \in C^0(\Omega, \Omega^1_{E_A}) \) such that \(\mu - v = (\delta + \ast)\sigma^0_1 \).

Recall that for nonsingular projective varieties, the spectral sequence associated to the Hodge filtration degenerates at the \(E^1 \)-level, so it will be the same as the algebraic de Rham cohomology relation if we define a ‘\(\simeq \)’ relation there. However for the non-proper case \(E_A \), the equivalence ‘\(\simeq \)’ is a relation stronger than algebraic de Rham cohomology. It will turn out to be important for us to rule out the influence from \(C^1(\Omega, \Theta_{E_A}) \).

The Gauss-Manin connection \(D : \Gamma(A, \Theta_A \otimes R^1 \kappa, \mathbb{C}) \to \Gamma(A, \Omega^1_A \otimes R^1 \kappa, \mathbb{C}) \) is described as follows: an element \(\mu \in \Gamma(A, \Theta_A \otimes R^1 \kappa, \mathbb{C}) \) can be represented by \(\mu^0 + \mu^1 \in C^1(\Omega, \Theta_{E_A}) \otimes C^0(\Omega^1_{E_A/A}) \) such that \(\delta \mu^0 = 0 \) and \(d\mu^0 = \delta \mu^1 \), where \(\Omega^1_{E_A/A} \) denotes the sheaf of relative differential forms, and \(d \) is the relative differential. Thus, if we lift \(\mu^0 \) to \(\tilde{\mu}^0 \in C^0(\Omega, \Theta_{E_A}) \), the condition is to say that \(\delta \tilde{\mu}^0 = 0 \) and \(d\tilde{\mu}^0 = \delta \tilde{\mu}^1 \), where \(\delta \) denotes the total exterior differential. And of course \(\kappa^*\Omega^1_A \otimes \Omega^1_{E_A/A} = \Omega^1_{E_A} \), so we define \(D\mu \) to be \(-(d\mu^0 + \delta \mu^1)d\mu^0 + \delta \mu^1 \), here \(d \) are all total differentials. \(D\mu \) viewed as an element in \(\Gamma(A, \Theta_A \otimes R^1 \kappa, \mathbb{C}) \) does not depend on the choice of \(\tilde{\mu}^0 \). Here \(\Gamma(A, \Omega^1_A \otimes R^1 \kappa, \mathbb{C}) \) is regarded as the quotient of \(C^1(\Omega, \kappa^*\Omega^1_A) \otimes C^0(\Omega, \kappa^*\Omega^1_A) \) by \((\delta + d)C^0(\Omega, \kappa^*\Omega^1_A) \).

An element \(u \in \Gamma(A, \Omega^1_A \otimes R^1 \kappa, \mathbb{C}) \) can be written as \(dt \wedge \tilde{u} \), where \(\tilde{u} \in \Gamma(A, \Theta_A \otimes R^1 \kappa, \mathbb{C}) \). Now if \(D\mu = dt \wedge \tilde{u} \), we will denote \(\tilde{u} \) by \(D\tau \mu \). This map \(D\tau : \Gamma(A, \Theta_A \otimes R^1 \kappa, \mathbb{C}) \to \Gamma(A, \Theta_A \otimes R^1 \kappa, \mathbb{C}) \) is the Gauss-Manin connection, in the sense of §2, with respect to the derivation \(\frac{\partial}{\partial t} \).

Take an affine open covering \(\mathcal{U} = (V_i)_{i \in I} \) of \(E \) such that for each \(V_i \) we have a rational function \(f_i \in K(E) \) with \(\text{Zero}(f_i) \cap V_i = \emptyset \cap V_i \) and \(\text{Pole}(f_i) \cap V_i = \emptyset \cap V_i \). Then the Chern class \(c^1 = c(\Theta_E(s - o)) \) can be represented as an algebraic de Rham cohomology class by \(c^1|_{V_i} = \frac{1}{2\pi i} d\log(f_i/f_i) \). Now Lemma 5 says that there exists a \(\nu^0 \in C^0(\mathcal{U}, \Omega^1_A) \) such that \(c^1 - \delta \nu^0 \in C^1(\mathcal{U}, \kappa^*\Omega^1_A) \). We put \(u = c^1 - (\delta + d)\nu^0 \). Then \(u \simeq c^1 \) and \(u \) can be viewed as an element in \(\Gamma(A, \Omega^1_A \otimes R^1 \kappa, \mathbb{C}) \). The element \(\tilde{u} \in \Gamma(A, \Theta_A \otimes R^1 \kappa, \mathbb{C}) \) where \(u = dt \wedge \tilde{u} \) is what we will use to describe Manin’s map \(\mu(s) \).

We first want to find a \(v \) such that \(Dv = u \). This cannot be done algebraically, thus we do the following construction:
Proof. Put $p_0^1 \in C^1(\mathcal{M}, \mathcal{O}_F^{\pi \times})$ to be $(p_0^1)|_{w_j} = g_k/g_j$. The Chern class of the line bundle $\mathcal{O}_{E_k}(s - \sigma)$ restricted to F can also be viewed as the image of p_0^1 under the connecting map $H^1(F, \mathcal{O}_F^{\pi \times}) \to H^2(F, \mathbb{Z})$ induced from the exact sequence

$$0 \to \mathbb{Z} \to \mathcal{O}_F^{\pi \times} \xrightarrow{\partial} \mathcal{O}_F^{\pi \times} \to 0.$$

Now the line bundle is trivial for sufficiently small N, so the image of p_0^1 is 0. Then the lemma follows from the construction of the connecting map.

Now we can put together v_0^1 and v_1^0 to define $v = v_0^1 - v_1^0$, and v can be viewed as an element in $\Gamma(N, \mathcal{O}_E^{\pi \times} \otimes \mathfrak{R} \kappa, \mathbb{C})$. The Gauss-Manin connection can be defined parallely in the analytic case, namely $Dv = (-d v_0^1 - \delta v_1^0) - dv_1^0 = c_1 - (\delta + d)v_1^0 = u$. The construction of v is of course local for each $\tau \in A$, however Dv glues to a global algebraic cocycle u.

Let $\omega \in \Gamma(A, \kappa, \Omega^1_{E_k/A})$ be a relative 1-form of the first kind. View ω as an element in $\Gamma(A, \mathcal{O}_A \otimes \mathfrak{R} \kappa, \mathbb{C})$ and consider the cup product $v \sim \omega \in \Gamma(N, \mathcal{O}_E^\pi \otimes \mathfrak{R} \kappa, \mathbb{C})$. Since the fibers of κ are oriented manifolds of real dimension 2 we have a natural sheaf isomorphism $\mathfrak{R}^2 \kappa, \mathbb{C} \cong \mathbb{C}$, hence $v \sim \omega$ can be viewed as an analytic function on N.

Lemma 7. We have $v \sim \omega = f^* \omega$. The ambiguity of the choice of an integral path comes from the choice of branches of $\log(g_k/g_j)$ in Definition 2.

Proof. We argue on each fiber $\mathfrak{f} \subset F$ of κ. Denote the open covering \mathfrak{M} restricted to \mathfrak{f} also by \mathfrak{M}. Consider the bicomplex

$$
\begin{array}{c}
C^1(\mathfrak{M}, \mathcal{D}_1^j) \xrightarrow{d} C^0(\mathfrak{M}, \mathcal{D}_1^j) \\
\delta \uparrow \\
\mathcal{D}_1^j \rightarrow \mathcal{D}_1^j
\end{array}
$$

where \mathcal{D}_1^j are sheaves of currents of degree i. The sheaves \mathcal{D}_1^j are fine, and it is known that the de Rham complex with currents gives the de Rham cohomology, so the above bicomplex also does. We can regard $v \sim \omega$, where $(v \sim \omega)|_{w_j} = \frac{1}{\mathcal{D}_1} \log(g_k/g_j) \omega$, as an element in $C^1(\mathfrak{M}, \mathcal{D}_1^j)$. Fix a cut line γ on \mathfrak{f} from $\sigma \cap \mathfrak{f}$ to $\sigma \cap \mathfrak{f}$. Refine \mathfrak{M} if necessary, we can find an element $z \in C^1(\mathfrak{M}, \mathbb{Z})$ such that $\delta z = 0$ and $(v \sim \omega) - z \omega = \delta \sigma$, where $\sigma \in C^0(\mathfrak{M}, \mathcal{D}_1^j)$ and $(\sigma)|_{w_j} = \frac{1}{\mathcal{D}_1} \log(g_j) \omega$, the branch of $\log(g_j)$ is taken to be such that the only discontinuities of $\log(g_j)$ are on the cut line γ, and the differences of values of $\log(g_j)$ between the two sides of γ are just $2\pi i$. Then $v \sim \omega$ is cohomologous to $z \omega - d \sigma$, where z can be viewed as an element in $H^1(\mathfrak{f}, \mathbb{Z})$ which comes from the choice of an integral path or a branch of $\log(g_k/g_j)$, and $d \sigma$ is the differential of σ in the sense of a current. Take the fundamental class $[\mathfrak{f}]$ of \mathfrak{f} we have $-d \sigma([\mathfrak{f}]) = - \int_{[\mathfrak{f}]} d \sigma = - \int_{[\mathfrak{f}] \cap \gamma} \sigma = f^* \omega$, which proves the statement.

Put $\partial = \frac{\partial}{\partial \mathfrak{f}}$, $\omega = \frac{dz}{z}$ and let Manin’s map μ be defined by the Picard-Fuchs equation $P_2 \partial \partial + P_1 \partial + P_0$ with respect to ω. Then using Lemma 7 we can apart ∂ to each side.
of the cup product, while by definition we have \((P_2D_{\frac{3}{1}}D_{\frac{3}{1}} + P_1D_{\frac{3}{1}})\omega = 0\), so
\[
\mu(s) = (P_2D_{\frac{3}{1}}D_{\frac{3}{1}} + P_1D_{\frac{3}{1}})(\nu \sim \omega)
\]
\[
= P_2(D_{\frac{3}{1}}\nu \sim D_{\frac{3}{1}}\omega) + (P_2\frac{\partial}{\partial t} + P_1)(D_{\frac{3}{1}}\nu \sim \omega)
\]
\[
= P_2(\hat{u} \sim D_{\frac{3}{1}}\omega) + (P_2\frac{\partial}{\partial t} + P_1)(\hat{u} \sim \omega)
\]
(10)

Note that, the cup product \(\nu \sim \omega\) does not depend on the choice of \(v_1^0\), thus is determined only by \(c_1^\perp\). So we can choose any \(u\) such that \(u \simeq c_1^\perp\) and \(u \in \Gamma(A, \Omega_A^1 \otimes R^1 \mathbb{K}, \mathbb{C})\), in the calculation of \(\mu(s)\). This is the merit to use relative 1-forms of the first kind; also the reason for us to define the relation ‘\(\simeq\)’.

Definition 3. Now we can define a \(\mathbb{C}\)-linear map \(\hat{\mu} : H^1_{prim}(\bar{E}, \Omega^1_{\bar{E}}) \oplus H^0(\bar{E}, \Omega^2_{\bar{E}}) \rightarrow \mathbb{C}(t)\) as follows: for any \(c \in H^1_{prim}(\bar{E}, \Omega^1_{\bar{E}}) \oplus H^0(\bar{E}, \Omega^2_{\bar{E}})\), by Lemma 5 we can find a \(\hat{u} \in \Gamma(A, \mathcal{O}_A \otimes R^1 \mathbb{K}, \mathbb{C})\) such that \(c|_{E_A} \simeq dt \wedge \hat{u}\). Then we define
\[
\hat{\mu}(c) = P_2(\hat{u} \sim D_{\frac{3}{1}}\omega) + (P_2\frac{\partial}{\partial t} + P_1)(\hat{u} \sim \omega).
\]
This generalizes Manin’s map \(\mu\), and provides a cohomological interpretation.

Recall that \(h^{1,1}(\bar{E}) = 10n, h^{2,0}(\bar{E}) = n - 1\). Let \(W \subset H^{1,1}(\bar{E})\) be the subspace generated by “trivial algebraic cycles”, i.e. the 0-section, generic fiber, and all fiber components which do not intersect the 0-section. We have an orthogonal decomposition \(H^{1,1}(\bar{E}) = W \oplus W^\perp\). The Mordell-Weil lattice of \(\bar{E}\) is a lattice of an \(\mathbb{R}\)-subspace of \(W^\perp = W^\perp \cap H^2(\bar{E}, \mathbb{R})\), and \(\dim_{\mathbb{C}} W^\perp = 10n - 2 - \sum v(m_v - 1)\) where \(m_v\) is the number of fiber components and \(v\) runs over all (non-irreducible singular) fibers of \(\bar{E}\). (cf. [19])

\(W \cap H^1_{prim}(\bar{E}, \Omega^1_{\bar{E}})\) is generated by fiber components while \(W^\perp \subset H^1_{prim}(\bar{E}, \Omega^1_{\bar{E}})\).

We have \(\hat{\mu}(W \cap H^1_{prim}(\bar{E}, \Omega^1_{\bar{E}})) = 0\), because the line bundle (and thus its Chern class) associated to a fiber component is trivial when restricted to \(E_A\). So \(\hat{\mu}\) is essentially a map from \(W^\perp \oplus H^2(\mathbb{E})\) to \(\mathbb{C}(t)\).

4 Proof of the main theorem

By an explicit calculation of the algebraic de Rham cohomology, we can get the image of \(\hat{\mu}\). The cohomology calculation is summarized in the following key lemma which will be proved in \(\S 7\):

Lemma 8 (Key Lemma). Regard \(\omega = \frac{dz}{z}\) as an element in \(\Gamma(A, \mathcal{O}_A \otimes R^1 \mathbb{K}, \mathbb{C})\). There exists an \(\eta \in \Gamma(A, \mathcal{O}_A \otimes R^1 \mathbb{K}, \mathbb{C})\) such that:

1. \(\eta \sim \omega = 4\pi\iota\)

2. The Gauss-Manin connection is
\[
D_{\bar{E}} \left(\frac{\eta}{\omega} \right) = \frac{1}{12\Delta} \begin{pmatrix} \Delta' & -a\Delta \\ \Lambda & -\Delta' \end{pmatrix} \left(\frac{\eta}{\omega} \right).
\]
3. For any $p, q \in \mathbb{C}[t]$ and $p_\omega, q_\omega \in \mathbb{C}[t^{-1}]$, there exists $u \in F^1H^2_{fr}(\tilde{E})$ such that $u|_{E_u} \simeq dt \wedge v$, where

$$v = (-\frac{1}{2} \Lambda' p - 6p' + q)\eta + (\frac{1}{2} a \Lambda p + \frac{12}{\Lambda^2} \rho(p - t^n p_\omega, q - t^{-n-2} q_\omega)) \omega.$$

In this section, we use Lemma 8 to write down elements in $\text{Im} \tilde{\mu}$, then by a dimension counting, we prove that $\text{Im} \tilde{\mu} \subset \mathbb{C}[t]$ and $\tilde{\mu} : W^\perp \oplus H^2(\tilde{E}) \to \mathbb{C}[t]$ is injective. This together with Proposition 6 will imply the main theorem.

First, for a u as in 3. of Lemma 8, calculating by Definition 3 we get

$$\frac{1}{4\pi i} \tilde{\mu}(u) = [\frac{1}{\Lambda^2} \rho(t^n p_\omega, t^{-n-2} q_\omega)] \Lambda^2 + \rho(p, q) \text{ MOD } \Lambda^2. \quad (11)$$

Then we count the dimension of the vector space consisting of these elements.

Lemma 9. We have $\dim \mathbb{C} B = \deg \Lambda - \sum_{i \neq \infty} (m_i - 1)$, where m_i is the number of fiber components and v runs over all but the ∞-fiber of \tilde{E}.

Proof. This is proved by a local calculation. Put $R = \{p(p, q); p, q \in \mathbb{C}[t]\}$. For any $w \in \mathbb{C}$, we have a natural map $\pi_w : \mathbb{C}[t] \to \mathbb{C}[t]/((t - w)^2/\rho)$. Then by the Chinese Remainder Theorem, $\dim \mathbb{C} B = \sum_w \dim \mathbb{C} \pi_w(R)$. Now fix a $w \in \mathbb{C}$, from Lemma 4 we see that $\dim \mathbb{C} \pi_w(P_2 p' + P_1 p' + P_2 p)$ can be any integer $\geq \ord_w (\Delta) - 2$ except for

1. $\ord_w \Lambda = 2$ and $2 \ord_w \Lambda = 1$, if the w-fiber is nonsingular ($\ord_w \Lambda = 0$)
2. $\ord_w (\Delta) = 2$, if the w-fiber is of type I_m ($m \geq 1$)

On the other hand it is easy to check that $\ord_w (\Delta \Lambda' - \Delta' q + \frac{11}{12} \Lambda' \Lambda q)$ can be any integer $\geq \ord_w (\Delta) - 1$ except for $2 \ord_w \Lambda = 1$ if the w-fiber is nonsingular (and $\ord_w \Delta = 0$). So

1. If the w-fiber is nonsingular, $\ord_w \rho(p, q)$ can be any integer $\geq \ord_w \Lambda - 1$ except for $2 \ord_w \Lambda = 1$. So $\dim \mathbb{C} \pi_w(R) = \ord_w \Lambda$.
2. If the w-fiber is of type I_m ($m \geq 1$), $\ord_w \rho(p, q)$ can be any integer $\geq \ord_w (\Delta) - 1$. In this case $\ord_w \Lambda = \ord_w \Delta = 1$ and the number of w-fiber components $m_w = \ord_w \Delta$, so indeed $\dim \mathbb{C} \pi_w(R) = 0 = \ord_w \Lambda - (m_w - 1)$.
3. Otherwise, $\ord_w \rho(p, q)$ can be any integer $\geq \ord_w (\Delta) = 2$. In this case $m_w = \ord_w \Delta - 1$, we see also $\dim \mathbb{C} \pi_w(R) = \ord_w \Lambda - \ord_w \Delta = 2 = \ord_w \Lambda - (m_w - 1)$.

Now note that $\deg \Lambda = \sum_w \ord_w \Lambda$ so we are done. □

Lemma 10. Put $\Gamma = \{[\frac{1}{\Lambda^2} \rho(t^n p_\omega, t^{-n-2} q_\omega)]; p_\omega, q_\omega \in \mathbb{C}[t^{-1}]\}$. Then

1. If the ∞-fiber is nonsingular, then $\dim \mathbb{C} \Gamma = \deg \Lambda - \deg \Lambda - n - 2$.
2. If the ∞-fiber is of type I_m ($m \geq 1$), then $\dim \mathbb{C} \Gamma = \deg \Lambda - \deg \Lambda - n - 1$.
3. Otherwise $\dim \mathbb{C} \Gamma = \deg \Lambda - \deg \Lambda - n$. 18
Let Λ be a noetherian ring, $X \subseteq \mathbb{P}_k^n$ a projective scheme, and let $\mathcal{U} = \{U_i\}_{0 \leq i \leq r}$ be the canonical open covering such that $U_i = \{x_i \neq 0\}$. To calculate the Čech cohomology under this setup, we take a free resolution $0 \leftarrow \mathcal{F} \leftarrow \bigoplus_i \mathcal{O}_{\mathbb{P}_k^n}(n_i) \leftarrow \cdots \leftarrow \bigoplus_j \mathcal{O}_{\mathbb{P}_k^n}(-n_j) \leftarrow 0$.
(that it can be taken with length less than \(r \) is a consequence of Hilbert’s syzygy theorem) and consider the bicomplex:

\[
\begin{array}{cccccc}
H'(P_A, \mathcal{F}_0) & \cdots & & & & H'(P_A, \mathcal{F}_r) \\
\uparrow & & & & & \uparrow \\
C'(\Omega, \mathcal{F}) & \cdots & & & & C'(\Omega, \mathcal{F}_r) \\
\uparrow & & & & & \uparrow \\
\vdots & & & & & \vdots \\
\uparrow & & & & & \uparrow \\
C^0(\Omega, \mathcal{F}) & \cdots & & & & C^0(\Omega, \mathcal{F}_r) \\
\end{array}
\]

It is well-known that if \(n \geq 1 \) we have \(H^i(P_A, \mathcal{O}_{P_A}(-n)) = 0 \) for \(0 \leq i \leq r - 1 \), and \(\{X_j^0 \cdots X_j^i| l_i \leq -1, \sum l_i = -n\} \) (viewed as local sections on the open set \(U_{0,r} \)) is a basis of \(H^i(P_A, \mathcal{O}_{P_A}(-n)) \), so by the routine argument on a bicomplex we get an isomorphism \(H^i(X, \mathcal{F}) \cong h_\ast(H^i(P_A, \mathcal{F})) \), however to practically use this to calculate \(H^i(X, \mathcal{F}) \), \(i.e. \) to carry out the diagram chasing of the bicomplex, some remarks should be made:

- It is a standard task to calculate the free resolution of a coherent sheaf on a projective scheme, using gröbner basis. (cf.[1], and also [3]) For the use in this paper, free resolutions are explicitly given, however calculation with gröbner basis is still necessary to “pull back the row”, \(i.e. \) for a local section \(s \) which satisfy \(\phi(s) = 0 \), to find a local section \(t \) such that \(s = \phi(t) \). Here \(\phi \) denotes the boundary map of the free resolution.

- In order to “pull back the column”, \(i.e. \) for a \((p + 1)\)-Čech coboundary \(\beta \) of the sheaf \(\mathcal{O}_{P_A}(-n) \), to find an \(\alpha \in C^p(\Omega, \mathcal{O}_{P_A}(-n)) \) such that \(\delta \alpha = \beta \), the following chain homotopy map \(\Phi : C^{p+1} \to C^p \) can be used:

\[
(\Phi \beta)_{0,\ldots,k+1,\ldots,i_p} = (-1)^k(\beta_{0,\ldots,k(k+1)i_{k+1}\ldots,i_p})_{k+1}
\]

Here \(k + 1 < i_{k+1} < \cdots < i_p \leq r \), and if we write \(\beta_{0,\ldots,k(k+1)i_{k+1}\ldots,i_p} \) in the form \(\sum c_{0,\ldots,i_p}X_0 \cdots X_p \) (where \(c_{0,\ldots,i_p} \in A \)), then \((\beta_{0,\ldots,k(k+1)i_{k+1}\ldots,i_p})_{k+1} \) means to take the sum of such \((c_{0,\ldots,i_p}X_0 \cdots X_p)s \) that \(l_j \leq -1 \) for all \(0 \leq j \leq k \) and \(l_{k+1} \geq 0 \).

Note that, restricted to every fixed \(X_0 \cdots X_p \), denoting the set \(\{ i|l_i \geq 0 \} \) by \(\{l\} \), this chain homotopy map \(\Phi \) is just the chain homotopy map for the \(A \)-coefficient complex of a simplex whose vertexes are labeled by the set \(\{l\} \). The necessity to use this \(\Phi \) is the reason why we should take the canonical open covering \(\Omega \) in the calculation.

- An experimental implementation using SINGULAR can be found at [21].
To deal with other open affine coverings, say, \(\mathcal{U} = (V_j)_{j \in J} \), define

\[
C^{p,q} = \bigoplus_{0 \leq i_0 < \cdots < i_p \leq r} \mathcal{F}(U_{i_0} \cap V_{j_0} \cap \cdots \cap V_{j_q})
\]

then the bicomplex

\[
\begin{array}{c c c c c}
C^r(\Delta, \mathcal{F}) & \rightarrow & C^{r,0} & \rightarrow & \cdots & \rightarrow & C^{r,s} \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
\vdots & & \vdots & & \vdots & & \vdots \\
C^0(\Delta, \mathcal{F}) & \rightarrow & C^{0,0} & \rightarrow & \cdots & \rightarrow & C^{0,s} \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
C^0(\mathcal{U}, \mathcal{F}) & \rightarrow & \cdots & \rightarrow & C^r(\mathcal{U}, \mathcal{F})
\end{array}
\]

will relate \(C(\mathcal{U}, \mathcal{F}) \) with \(C(\Delta, \mathcal{F}) \). To actually perform the diagram chasing, all we should know is a way to “pull back” the following type of exact sequences:

\[
0 \rightarrow M \rightarrow \bigoplus_{i_0 \in I} M_{i_0} \delta \rightarrow \bigoplus_{i_0 < \cdots < i_p} M_{i_0} \cdots \delta_i M_{i_p} \rightarrow \cdots
\]

Here \(M \) is a finitely generated \(R \)-module where \(R \) is a finitely generated \(A \)-algebra. \(M_{r_0} \) etc. denote the localizations of \(M \). \(I \subset R \) is a finite set endowed with a well-ordering and the ideal generated by \(I \) is \(R \). The pull-back can be done as follows. For a \(p \)-coboundary \(\beta \in \bigoplus M_{r_0} \cdots \delta_i M_{i_p} \), take \(m \) sufficiently large such that \(r^m_i(\beta)_{r_0 \cdots r_p} \in M_{r_0} \cdots \delta_i M_{i_p} \) for all \(r_0 < \cdots < r_p \in I \) and all \(0 \leq i \leq p \). Then take a “division of the unity” \(1 = \sum c_i r_i^m \) and define \(\alpha \in \bigoplus M_{r_0 \cdots r_p} \) to be

\[
\alpha = \sum_{r_0 < \cdots < r_p} \sum_{i_0 \leq \cdots \leq i_p} (-1)^i c_i (r_i^m(\beta)_{r_0 \cdots r_p})
\]

where \((r_i^m(\beta)_{r_0 \cdots r_p}) \) is viewed as an element of \(M_{r_0} \cdots \delta_i M_{i_p} \). Thus we have \(\delta \alpha = \beta \).

6 Free resolutions for hypersurfaces

Let \(A \) be a Cohen-Macaulay integral \(\mathbb{C} \)-algebra, put \(P'_A = \text{Proj} A[X_0, \ldots, X_r] \), and let \(X \subset P'_A \) be a hypersurface defined by a homogeneous polynomial \(f \in A[X_0, \ldots, X_r] \) of degree \(m \). Assume that \(X \) is smooth over the generic point of \(\text{Spec} A \). In this section we will give an explicit free resolution of the sheaf \(\Omega^1_X \).

Lemma 12 (Koszul Complex). Let \(x_0, \ldots, x_n \in B \) be a regular sequence for a ring \(B \). Define a complex \(K \) by

\[
K_p := \bigoplus_{0 \leq i_0 < \cdots < i_p \leq n} B e_{i_0 \cdots i_p}, \quad d(e_{i_0 \cdots i_p}) := \sum_{k=0}^p (-1)^k x_k e_{i_0 \cdots \hat{i_k} \cdots i_p}
\]
Then $H_i(K) = 0$ for $i \geq 0$ and $H_{-1}(K) = B/(x_0, \ldots, x_n)$. If B is Cohen-Macaulay and $\dim B - \dim B/(x_0, \ldots, x_n) = n + 1$, then x_0, \ldots, x_n is a regular sequence.

Proof. cf. for example [15].

Notation 4. Let $\tilde{\Omega}$ and $\tilde{\Omega}'$ be the locally free sheaves on \mathbb{P}_d^n defined by

$$\tilde{\Omega} = \bigoplus_{k=0}^{r} \mathcal{O}_{\mathbb{P}_d^n}(-1)dX_k, \quad \tilde{\Omega}' = \bigwedge^{j} \tilde{\Omega}.$$

Here dX_k is a formal symbol.

Apply Lemma 12 to the ring $A[X_0, \ldots, X_r]$ with regular sequence (X_0, \ldots, X_r), we get the following exact sequence:

$$0 \leftarrow \mathcal{O}_{\mathbb{P}_d^n/A} \leftarrow \tilde{\Omega} \leftarrow \tilde{\Omega}^{i_2} \leftarrow \cdots \leftarrow \tilde{\Omega}^{r+1} \leftarrow 0 \quad (12)$$

Here the differential map i_θ can be viewed as the inner product with the formal vector field $\theta = X_0 \frac{\partial}{\partial X_0} + \cdots + X_r \frac{\partial}{\partial X_r}$ (and thus the notation).

Lemma 13. Regard $\Omega_{\mathbb{P}_d^n/A}^{i}$ as a subsheaf of $\tilde{\Omega}'$, then the following gives a free resolution of $\Omega_{\mathbb{P}_d^n/A}^{i}$:

$$0 \leftarrow \Omega_{\mathbb{P}_d^n/A}^{i} \leftarrow \tilde{\Omega} \leftarrow \tilde{\Omega}^{i+1} \leftarrow \tilde{\Omega}^{i+2} \leftarrow \cdots \leftarrow \tilde{\Omega}^{r+1} \leftarrow 0$$

Proof. An i-form $\alpha \in \tilde{\Omega}'$ comes from $\Omega_{\mathbb{P}_d^n/A}^{i}$, if and only if $i_\theta \alpha = 0$ (elementary calculation, or cf.[5, Prop.2.2]). So it follows immediately from (12).

Denote the quotient field of A by K. Since X is smooth over the generic point of $\text{Spec}A$, we have $\dim K[X_0, \ldots, X_r]/(\frac{\partial}{\partial X_0} f, \ldots, \frac{\partial}{\partial X_r} f) = 0$, so $(\frac{\partial}{\partial X_0} f, \ldots, \frac{\partial}{\partial X_r} f)$ is a regular sequence of $A[X_0, \ldots, X_r]$ assuming that A is Cohen-Macaulay. Apply Lemma 12 to this regular sequence we get that

$$\tilde{\Omega}^{r+1} \leftarrow \tilde{\Omega}^{i+n} \leftarrow \tilde{\Omega}^{i+n-1} \leftarrow \cdots \leftarrow \tilde{\Omega}^r \leftarrow 0 \quad (13)$$

is an exact sequence. Here the differential map can be viewed as the wedge product with $df = \frac{\partial f}{\partial X_0} dX_0 + \cdots + \frac{\partial f}{\partial X_r} dX_r$.

Similarly since $K[X_0, \ldots, X_r]/(\frac{\partial}{\partial X_0} f, \ldots, \frac{\partial}{\partial X_i} f, \ldots, \frac{\partial}{\partial X_r} f) = 0$ for all $0 \leq i \leq r$, we conclude that $(\frac{\partial}{\partial X_0} f, \ldots, \frac{\partial}{\partial X_i} f, \ldots, \frac{\partial}{\partial X_r} f)$ is a regular sequence of the ring $A[X_0, \ldots, X_r]/(\frac{\partial}{\partial X_i} f)$, apply Lemma 12 to these and glue all i, we get the following exact sequence:

$$\Omega_{\mathbb{P}_d^n/A}^{i} \leftarrow \Theta_{X} \leftarrow \Omega_{\mathbb{P}_d^n/A}^{i-1} \leftarrow \Theta_{X} \leftarrow \Omega_{\mathbb{P}_d^n/A}^{i-2} \leftarrow \Theta_{X} \leftarrow \cdots \quad (14)$$

22
Here $\Omega^0_{X/A}$ is regarded as a subsheaf of $\tilde{\Omega}^0$. Note that if an i-form $\alpha \in \tilde{\Omega}^i$ satisfies $t_\theta \alpha = 0$, we have $t_\theta (df \wedge \alpha) = mf \alpha \equiv 0 \mod (f)$, so the differential map in (14) is well-defined.

Lemma 14. The following is a free resolution for $\Omega^1_{X/A}$:

$$0 \leftarrow \Omega^1_{X/A} \leftarrow \tilde{\Omega}^1 \leftarrow \tilde{\Omega}^2 \leftarrow \tilde{\Omega}^i \leftarrow \tilde{\Omega}^i + 1 \leftarrow \tilde{\Omega}^i + 2 \leftarrow \tilde{\Omega}^i + 3 \leftarrow \tilde{\Omega}^i + 1 (-2m) \leftarrow \tilde{\Omega}^i + 3 (-2m) \leftarrow \cdots$$

Proof. $\Omega^1_{X/A}$ can be viewed as the cokernel of the map $\Omega^0_{X/A} \otimes \mathcal{O}_X(-m) d f / \mathcal{O}^0_{X/A} \otimes \mathcal{O}_X$, so the kernel of $\Omega^1_{X/A} \leftarrow \tilde{\Omega}^i + 1$ is generated by elements of the form $t_\theta \alpha$, $f \beta$ and $df \wedge \gamma$ (where $\alpha \in \tilde{\Omega}^{i+2}$, $\beta \in \tilde{\Omega}^{i+1}(-m)$, $\gamma \in \tilde{\Omega}^i(-m)$). However by the formula $m f \beta = t_\theta (df \wedge \beta) + df \wedge t_\theta \beta$ we see that it is already generated by elements of the form $t_\theta \alpha$ and $df \wedge \gamma$.

As for the kernel of $\tilde{\Omega}^i + 1 \leftarrow \tilde{\Omega}^i + 2 \otimes \tilde{\Omega}^i (-m)$, assume that $t_\theta \alpha + df \wedge \beta = 0$ ($\alpha \in \tilde{\Omega}^{i+2}$, $\beta \in \tilde{\Omega}^{i+1}(-m)$). Then $0 = -t_\theta t_\theta \alpha = t_\theta (df \wedge \beta) + df \wedge t_\theta \beta \equiv df \wedge t_\theta \beta \mod (f)$, from the exactness of (14) we have a $\gamma \in \tilde{\Omega}^i(-m)$ such that $t_\theta \beta \equiv df \wedge \gamma \mod (f)$, so $t_\theta \beta \equiv df \wedge \gamma + f \delta$ for some $\delta \in \tilde{\Omega}^i(-2m)$. So $0 = m f \beta + df \wedge t_\theta \beta = f \cdot (m \beta + df \wedge \delta)$, thus $m \beta + df \wedge \delta = 0$, or $\beta = -1_m df \wedge \delta$. Then it follows that $t_\theta \alpha = 0$, so $\alpha = t_\theta \eta$ for some $\eta \in \tilde{\Omega}^i + 3$ from (12).

Exactness elsewhere immediately follows from (12) and (13).

Notation 5. We denote the free resolution in Lemma 14 by $\Omega^1_{X/A} \leftarrow \mathcal{S}^i$.

When $A = C$, let $jac(f)$ be the ideal of $C[X_0, \ldots, X_r]$ generated by $\frac{\partial f}{\partial X_0}, \ldots, \frac{\partial f}{\partial X_r}$, and let V_p be the $(m(p + 1) - (r + 1))$-degree part of $C[X_0, \ldots, X_r]/jac(f)$, it is shown by Griffiths[5] that there is an isomorphism $V_p \cong H^{-1-p} X$ induced from the residue map. On the other hand, using the free resolution in Notation 5 we can calculate that $H^{-1-p} X, \Omega^0_p$ is naturally dual to V_p. (Note that, $H^{-1-p} X, \Omega^0_p$ is the same as $H^{-1-p} X, \Omega^0_p$ unless r is odd and $p = \frac{r+1}{2}$, in this case, $H^{-1-p} X, \Omega^0_p$ contains a component $H^p C, \Omega^{\tilde{1}}$, which is exactly the component generated by the hyperplane section.)

For general cases, recall that from the morphism $\kappa : X \rightarrow A$ we deduce a filtration $L^0 \supset L^1 \supset \cdots \supset L^i$ of the sheaf Ω^1_X where:

$$L^i / \Omega^1_X = \text{im}(\kappa^* \Omega^1_A \otimes \Omega^{-i}_X \rightarrow \Omega^1_X)$$

and we have $L^i / L^{i+1} = \kappa^* \Omega^1_A \otimes \Omega^{-i}_X$. Now fix an A-free resolution $\Omega^1_A \leftarrow \mathcal{R}$ of Ω^1_A (i.e. for any k, \mathcal{R}_k is a free A-module), then $\mathcal{R}^i = \bigwedge^i \mathcal{R}$ is an A-free resolution of Ω^1_A, and $\mathcal{R}^i \otimes_A \mathcal{R}^{-i}$ is a free resolution of $\kappa^* \Omega^1_A \otimes \Omega^{-i}_X$. Consider the following complex

$$\mathcal{E} \cong \bigoplus_{j=0}^i \mathcal{R}^i \otimes_A \mathcal{R}^{-i}$$
where \(\approx \) means that for any \(k \) we have \(\partial_k = \bigoplus_{j=0}^i (\mathcal{R}^j \otimes_A \mathcal{R}^{i-j})_k \), and the differential maps are also the same except that we should no longer regard the \(df \) in the differential maps of \(\mathcal{R}^{i-j} \) as a relative differential, but should also consider the partial derivatives of \(f \) on the coordinates of the base \(A \). Thus \(df \) will no longer be an element in \(\Gamma(\mathcal{P}_A, \mathcal{O}(m)) \), but an element in \(\Gamma(\mathcal{P}_A, \mathcal{O}(m)) \oplus \Gamma(\mathcal{A}(A, \mathcal{O}_A) \otimes \Gamma(\mathcal{P}_A, \mathcal{O}_A(m)) \), and we lift it to a fixed element in \(\Gamma(\mathcal{P}_A, \mathcal{O}(m)) \oplus \Gamma(\mathcal{A}(A, \mathcal{O}_A) \otimes \Gamma(\mathcal{P}_A, \mathcal{O}_A(m)) \).

Then the differential maps of \(\mathcal{E} \) will take \((\mathcal{R}^j \otimes_A \mathcal{R}^{i-j})_k \) to \((\mathcal{R}^j \otimes_A \mathcal{R}^{i-j-1})_{k-1} \), so \(\mathcal{E} \) has a filtration \(\mathcal{L}^0 \supset \mathcal{L}^1 \supset \cdots \supset \mathcal{L}^j \) where:

\[
\mathcal{L}^j \mathcal{E} \approx \bigoplus_{k=j}^i \mathcal{R}^k \otimes_A \mathcal{R}^{i-k}.
\]

This filtration is compatible to the filtration \(L \) of the sheaf \(\Omega_X \), and \(\mathcal{L}^j / \mathcal{L}^{j+1} = \mathcal{R}^j \otimes_A \mathcal{R}^{i-j} \) is a free resolution of \(L^j / L^{j+1} \), so we conclude that \(\mathcal{E} \) is a free resolution of \(\Omega_X \).

7 Calculation on elliptic surfaces

Notation 6. Use Notation 2, and in addition

- Put \(V = \text{Spec } \mathbb{C}[t] \) and \(V_\infty = \text{Spec } \mathbb{C}[t^{-1}] \).
- Put \(P^2_0 = \text{Proj } V[X, Y, Z] \) and \(P^2_1 = \text{Proj } V_{\infty}[X, Y, Z] \).
- Let \(E_0 \subset P^2_0 \) be the (maybe singular) hypersurface defined by the homogeneous polynomial \(Y^2Z - 4X^3 + 3aXZ^2 - bZ^3 \).
- Let \(E_\infty \subset P^2_1 \) be defined by \(Y^2Z_{\infty} - 4X_{\infty}^3 + 3a_\infty X_{\infty}Z_{\infty}^2 - b_\infty Z_{\infty}^3 \), where \(a_\infty, b_\infty \in \mathbb{C}[t^{-1}] \) and \(a_\infty = t^{-6a}, b_\infty = t^{-6b} \).

\(E_0 \) and \(E_\infty \) glues via the relation \(X_{\infty} = t^{-2a}X, Y_{\infty} = t^{-3b}Y \) and \(Z_{\infty} = Z \). The minimal proper regular model \(\tilde{E} \) is a desingularization of \(E_0 \cup E_\infty \), we denote this desingularization by \(\varphi : \tilde{E} = E_0 \cup E_\infty \rightarrow E_0 \cup E_\infty \).

In this section we will prove Lemma 8. The element \(\eta \in \Gamma(\mathcal{A}, \mathcal{O}_A \otimes R^1 \kappa, \mathbb{C}) \) is explicitly given as an element in \(C^1(\mathcal{U}, \mathcal{O}_{E_0}) \oplus C^0(\mathcal{U}, \Omega^1_{E_\infty}) \), where \(\mathcal{U} = \{U_X, U_Y, U_Z\} \) and \(U_X = \{X \neq 0\} \) etc. Now \(\eta \) is defined by

\[
\eta = \eta^1 + \eta^0, \quad \eta^0 = \begin{cases} -b_Z^2X + a_Z^2 & \text{on } U_{XY} \\ -\frac{Y}{X} & \text{on } U_{XZ} \\ 2a_Z^2 - 4a_Z^2 & \text{on } U_{YZ} \end{cases}
\]

and

\[
\eta^1 = \begin{cases} \frac{1}{2}((- \frac{1}{6}b^3 + \frac{1}{8}ba^3)X_Z^2 + (\frac{1}{2}b^2a - \frac{3}{16}a^4)Y_Z - \frac{1}{2}ba^2Y_Z) d(\frac{Y}{X}) \\ + (\frac{1}{2}b^3 - \frac{1}{8}ba^3)Y_Z^2 + (-\frac{5}{16}b^2a + \frac{3}{8}a^4)X_Z - \frac{1}{4}ba^2X_Z) d(\frac{X}{Z}) \end{cases} & \text{on } U_X \\ (-6b_Y^2 + 3a_Z^2Y_Z) X_Z dX_Y & \text{on } U_Y \\ (\frac{1}{2}(-\frac{4}{5}b^2 - \frac{2}{3}a^2)Z_Z^2 + \frac{1}{2}ba) d(\frac{Z}{X}) + (2b_X^2 + a^2Y_Z^2) d(\frac{Y}{Z}) & \text{on } U_Z \end{cases}
\]
Lemma 15. We can extend $\varepsilon^*(dt \wedge \eta^0)$ to a cocycle in $C^1(\mathfrak{M}, \Omega^1_{E^0}) \oplus C^0(\mathfrak{M}, \Omega^2_{E^0})$.

Proof. The desingularization ε is achieved by a series of blow-ups. So it is obvious that $\varepsilon^*\eta^0_1$ is well-defined on E_0. As for η^0_1, it can be easily checked by hand that $dt \wedge \eta^0_1$ extends to every nonsingular point of E_0, for example on $U_{\mathfrak{M}}$ we have

$$\frac{1}{\Delta} \left(\left(-\frac{4}{3} b \frac{X^2}{Z^2} - \frac{2}{3} a^2 \frac{X}{Z} + \frac{2}{3} b \eta \right) \frac{d(Y)}{Z} + \left(2b XY \frac{X^3}{Z^2} + a^2 Y \frac{X}{Z} \right) d\left(\frac{X}{Y} \right) \right) = -2 \frac{x}{y} dx,$$

the $\frac{1}{\Delta}$ factor is canceled. Then $\varepsilon^*(dt \wedge \eta^0_1)$ may only have poles on those fiber components disjoint to the 0-section. These fiber components, denoted by C_i, are rational curves with self-intersection $C_i^2 = -2$. By an induction using such exact sequences in the form

$$0 \to \Omega^2_{E^0} \left(\sum_{i=1}^k n_i C_i \right) \to \Omega^2_{E^0}(C_0 + \sum_{i=1}^k n_i C_i) \to \mathcal{O}_{C_0}(M) \to 0$$

while keeping the number $M = \sum_{i=1}^k n_i C_i - 2(n_0 + 1) \leq -1$ (this can be done because the configurations of those fiber components disjoint to the 0-section are trees), we can conclude the injectivity of the natural map $H^0(\Omega^2_{E^0}) \to H^0(\Omega^2_{E^0}(\sum n_i C_i))$ for sufficiently large n_i. Which means that any meromorphic section of $\Omega^2_{E^0}$ with only possible poles on C_i is always holomorphic. Hence $\varepsilon^*(dt \wedge \eta^0_1)$ can be extended to $C^0(\mathfrak{M}, \Omega^2_{E^0})$ and we are done. \(\square\)

We will need another cocycle $\alpha \in C^1(\mathfrak{M}, \Omega^1_{E^0}) \oplus C^0(\mathfrak{M}, \Omega^2_{E^0})$ defined by

$$\alpha = \alpha^1 + \alpha^0,$$

where $\alpha^1 = \begin{cases} \left(b^2 \frac{Y^2}{X^2} + 3a \frac{X dZ - ZdX}{X^2} \right) & \text{on } U_{XY} \\ -2a \frac{Y dZ - ZdX}{X^2} & \text{on } U_{XZ} \\ -3d \frac{Y^2}{X} & \text{on } U_{YZ} \end{cases}$ and

$$\alpha^0 = \begin{cases} \left(\frac{b^2 Y^2}{X^2} - \frac{1}{6} \frac{a Y dZ - Z dX}{X^2} \right) & \text{on } U_X \\ \left(\frac{9a d^2 - 6b^2}{4} a \frac{Y^2 d X}{X^2} + \frac{1}{3} \frac{a Y dZ - ZdX}{X^2} \right) & \text{on } U_Y \\ \left(3a^2 \frac{Y}{X} - 6b^2 \right) d \left(\frac{X}{Y} \right) & \text{on } U_Z \end{cases}.$$

Consider the transformation $X \mapsto p^2 X, Y \mapsto p^3 Y, Z \mapsto Z, a \mapsto p^4 a$ and $b \mapsto p^6 b$, for some polynomial p. Under this transformation we can calculate that $\alpha^1 \mapsto p \alpha^1 - 6p^2 \eta^0_1 \wedge dt$ and $\alpha^2 \mapsto p \alpha^2 - 6p^2 \theta^0 \wedge dt$, where

$$\theta^0 = \begin{cases} \left(\frac{3}{2} \frac{Y^2}{X^2} \frac{Y dZ - ZdX}{X^2} - \frac{1}{2} a \frac{Y^2 d X}{X^2} + \frac{1}{2} a \frac{Y dZ - ZdX}{X^2} \right) & \text{on } U_X \\ \left(3a \frac{Y}{X} - 6b \right) \frac{Y dZ - ZdX}{X^2} & \text{on } U_Y \\ 0 & \text{on } U_Z \end{cases}.$$
So obviously \((p\alpha_1^t - 6p'\eta_1^t \land dt) + (p\alpha_2^t - 6p'\theta_1^t \land dt)\) is also a cocycle.

Notation 7. For \(p, q \in \mathbb{C}(t)\), define \(\xi(p, q) = (p\alpha_1^t - 6p'\eta_1^t \land dt + q\eta_1^t \land dt) + (p\alpha_2^t - 6p'\theta_1^t \land dt + q\eta_1^t \land dt)\).

We can parallelly define \(\xi_\infty\) and verify that \(\xi_\infty(p_\infty, q_\infty) = \xi(t^{-n}p_\infty, -t^{-n-2}q_\infty)\).

Notation 8. Put \(\omega = \frac{dz}{V}\) and \(\bar{\omega} = \omega \land dt\).

We also need cochains \(\psi_a, \psi_b \in C^0(\Omega, \Omega_{\xi_\infty})\) where

\[
\psi_a = \begin{cases}
\left\{ \frac{1}{8}baXZ - 3a' \frac{XZ}{Y} + bY \right\}d(\frac{Y}{X}) - \left\{ \frac{1}{8}baXZ - 3a' \frac{XZ}{Y} + bY \right\}d(\frac{Y}{X}) \\
\left\{ -36aXZ - 18baZ^2 \right\}dt - \left\{ -36aXZ - 18baZ^2 \right\}dt
\end{cases}
\]

and

\[
\psi_b = \begin{cases}
\left\{ -36aXZ - 18baZ^2 \right\}dt - \left\{ -36aXZ - 18baZ^2 \right\}dt \\
\left\{ -36aXZ - 18baZ^2 \right\}dt - \left\{ -36aXZ - 18baZ^2 \right\}dt
\end{cases}
\]

Regard the Čech complex of \(\Omega_\infty^t\) on the minimal proper regular model \(E\) as the bicomplex \(\mathcal{C}(E, \Omega_{\xi_\infty})\):

\[
C(\Omega, \Omega_{\xi_\infty}) \oplus C(\Omega_{\xi_\infty}, \Omega_{\xi_\infty}^t) \rightarrow C(\Omega \cap \Omega_{\xi_\infty}, \Omega_{\xi_\infty}^t \cap \Omega_{\xi_\infty})
\]

where \(\Omega_\infty = \{U_\infty, U_{t\infty}, U_{t\infty}^t\}, \Omega \cap \Omega_{\xi_\infty} = \{U_{t\infty}, U_{t\infty}, U_{t\infty}^t\}, U_{t\infty} = U_X \cap U_{t\infty}\) and \(U_{t\infty} = \{X_\infty \neq 0\}\) etc.

Definition 4. Fix \(p, q \in \mathbb{C}[t]\) and \(p_\infty, q_\infty \in \mathbb{C}[t^{-1}]\). Put \(g = p - t^{-n}p_\infty\) and \(h = q - t^{-n-2}q_\infty\). Assume that \(g\) and \(h - 6g'\) are divisible by \(\Lambda\), and take \(\sigma, \tau \in \mathbb{C}[t, t^{-1}]\) to be such that

\[
\begin{pmatrix}
\sigma \\
\tau
\end{pmatrix} = \begin{pmatrix}
g \\
h - 6g'
\end{pmatrix}.
\]

Then we define \(u \in F^1\mathcal{H}_{\partial E}(E)\) as

\[
u = (\xi - [r] \bar{\omega}) \oplus (\xi \infty + (r - [r]) \bar{\omega}) \oplus (\sigma \psi_a + \tau \psi_b)
\]

where \(\xi = \xi(p, q), \xi \infty = \xi(p_\infty, -q_\infty) = \xi(t^{-n}p_\infty, t^{-n-2}q_\infty)\) and \(r = -\frac{12}{\Lambda} \rho(g, h)\).

Lemma 16. The cocycle \(u\) in Definition 4 is well-defined.
Lemma 17. Let \(u \) be as in Definition 4. Then \(u \) is divisible by \(\Lambda \), the \(\sigma, \tau \in \mathbb{C}[t, t^{-1}] \) can be actually taken. Note the identity

\[
-6b\sigma' - 6a^2 \tau' - 5b' \sigma - \frac{21}{2} a d' \tau = -\frac{12}{\Lambda^2} \rho(g, h),
\]

so we have \(r \in \mathbb{C}[t, t^{-1}] \). Now \(\epsilon^*(\xi - [r] \partial) \) extends to an element in \(C^1(\mathcal{U}, \Omega^1_{E_1}) \oplus C^0(\mathcal{U}, \Omega^2_{E_1}) \), meanwhile \(\epsilon^*(\xi_{\omega} + (r - [r]) \partial) \) extends to an element in \(C^1(\mathcal{U}, \Omega^1_{E_1}) \oplus C^0(\mathcal{U}, \Omega^2_{E_1}) \), and \(\epsilon^*(\sigma \psi_a + \tau \psi_b) \in C^0(\mathcal{U} \cap \mathcal{U}_\omega, \Omega^1_{E_1}) \). For \(u \) to be a cocycle, we should check that \(\xi - \xi_{\omega} - r \partial = (\delta + d)(\sigma \psi_a + \tau \psi_b) \). This is obtained from the following facts:

\[
\begin{align*}
\delta \psi_a &= a \alpha_1 + \frac{3}{2} a' \eta_1 \wedge dt & (15) \\
\delta \psi_b &= b \alpha_1 + b' \eta_1 \wedge dt & (16) \\
d \psi_a &= a \alpha_0 + \frac{15}{2} a' \eta_0 \wedge dt - 6a' \theta_0 \wedge dt + 5b' \partial \omega & (17) \\
d \psi_b &= b \alpha_0 + 7b' \eta_0 \wedge dt - 6b' \theta_0 \wedge dt + \frac{21}{2} a d' \partial \omega & (18) \\
dt \wedge \psi_a &= 6a \eta_1 \wedge dt - 6a \theta_1 \wedge dt + 6b \partial \omega & (19) \\
dt \wedge \psi_b &= 6b \eta_1 \wedge dt - 6b \theta_1 \wedge dt + 6a \partial \omega & (20)
\end{align*}
\]

And these formulae above are checked by a computer (cf. [21]).

\[\square \]

Lemma 17. Let \(u \) be as in Definition 4. Then \(u|_{E_0} \simeq v \wedge dt \) where

\[
v = -\frac{1}{2} \Delta' p - 6p' + q \eta + \left(\frac{1}{2} a \Delta p - [r] \right) \omega.
\]

\[\square \]

Proof. At first we have \(u|_{E_0} \simeq \xi - [r] \partial \omega \). Then put \(\psi = \frac{1}{3} (a^2 \psi_a - b \psi_b) \) and calculate

\[
\xi - (\delta + d)(p \psi) = -\frac{1}{2} \Delta' p - 6p' + q \eta \wedge dt + \frac{1}{2} a \Delta p \partial \omega
\]

so we are done.

\[\square \]

Finally note that in the above arguments we can always replace \(p_{\omega} \) and \(q_{\omega} \) by \(p_{\omega} + \xi_{\omega} \) and \(q_{\omega} + \lambda_{\omega} \), with deg \(\xi_{\omega} \) and deg \(\lambda_{\omega} \) sufficiently small, to make \(g \) and \(h - 6g' \) divisible by \(\Lambda \). This will not affect the expression of \(v \). So the assumption that \(g \) and \(h - 6g' \) are divisible by \(\Lambda \) in Definition 4 is not essential, we have proved 3. of Lemma 8.

References

