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Abstract

In this paper we investigate a cellular automaton model associated with traffic
flow and of which the mathematical solution is unknown before. We classify
all kinds of stationary states and show that every state finally evolves to a
stationary state. The obtained flow-density relation shows multiple branches
corresponding to the stationary states in congested phases, which are essentially
due to the slow-to-start effect introduced into this model. The stability of these
states is formulated by a series of lemmas, and an algorithm is given to calculate
the stationary state that the current state finally evolves to. This algorithm has
a computational requirement in proportion to the number of cars.
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1. Introduction

Cellular automata[l] (CA) provide a simple, flexible way for modelling and
are suitable for computer simulations. Many interesting phenomena can be
observed in such simulation and then leave challenges to mathematicians. In
order to study traffic flow, CA have been used extensively in recent years, and
many traffic CA models have been proposed so far.[2-7]

There are basically two types of traffic CA models: Euler form and Lagrange
form.[12] Models in Euler form, such as the Burger’s CA[8,10] which can be
derived from Burger’s equation using an ultradiscrete method[9], focus on the
number of cars at each site; while the Lagrange form models or the car-following
models, such as the Nagel-Schreckenberg (NS) model[3], focus rather on the
headway and velocity of each car. These two types of representations are joined
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with an Euler-Lagrange transformation,[11,12] which is a discrete version of the
well-known one in hydrodynamics.

Usually the flow-density relation, or the so-called “fundamental diagram” of
each traffic CA is calculated by computer simulations, and is compared with
the measurements of real traffic. We show an example of real data[l5] at the
left of Fig.1, and point out that there is a wide scattering area near the critical
point where the transition from free phase to congested phase occurs. This area
suggests that there are multiple metastable states around the critical density.
The flow-density relation of the model we investigate is drawn at right, which
shows multiple branches really form the skeleton of such area.

Flowi{vehicles/min)

] 50 100 150 200
Density(vehiclesikm)

Figure 1: Left: An observed flow-density relation at the Tomei expressway in Japan. Right:
The flow-density relation of the model for M = 5.

The model we investigate in this paper is in Lagrange form and written as:
172'“ = z! 4+ min(M, I§+1 — xf — 1,mf;i — xz_l -1 (1)

where M is a constant and z! denotes the position of the ith car at time ¢. As
this is a CA model, the space and time are both discrete so t €N, z! €Z. And we
consider a periodic boundary condition or traffic flow on a circuit, which means
that the position x is identical with the position x + L, and that the ith car
is identical with the (¢ + N)th car, where L and N represent the length of the
circuit and the number of cars respectively. The constant M can be understood
as a legal limitation of the velocity, the term z!,, — 2! — 1 avoids a collision,
and the term xfﬁ — 2!7! — 1 represents the inertia of the car or the reaction
delay of the driver, which means that if z}] —2/™' =1 <af , —al -1 < M,
then the car will maintain a low speed for an extra time step (slow-to-start
effect). This kind of rule first appears in a slow-start (SIS) model proposed
by Takayasu and Takayasu,[2] which is the first known deterministic two-value
CA to show metastable states, its generalizations given by Nishinari both in
Euler[13] and Lagrange[12] form show metastable states and multiple branches
in the fundamental diagram. These multiple branches are really characteristic,



which appear in the model combined with the slow-to-start effect,[14] but are
rarely observed in other models.[3,4,5] We will prove in section 2 that this effect
results in many kinds of congested phases, and these phases form the multiple
branches in the fundamental diagram.

Very often, a traffic CA also takes in a driver’s perspective or anticipation,
which means that the ith car’s behavior depends not only on the (i + 1)th car,
but also the (i42)th car and even the (i+ 3)th car. The slow-to-start effect and
the driver’s anticipation are somehow cancelling each other, for although the
driver cannot response to the fluctuation of his headway immediately, he can
possibly predict the fluctuation through the headway of the car before him. So,
as model (1) only takes in the slow-to-start effect, it is not amazing to find an
extreme behavior of cars, which makes a jam very easy to remain and very hard
to dissolve. This will be made clear in section 3 where we show some results
about a jam’s “stability”. The character of such results have been observed in a
model combined with the slow-to-start effect,[14] through computer simulations.
There is also an algorithm to predict the final stationary state which has a
computational requirement in proportion to N? (where N is the number of
cars) given in section 3.

In section 4 we will make good use of the facts proved in section 3, and
develop some tools to investigate the detailed behavior of a jam’s remaining.
As a result, an algorithm with a computational requirement in proportion to N
is obtained.

We conclude this paper in section 5 with a generalization of model (1) to
include a driver’s perspective. Some elemental discussions about the generalized
model are given.

2. Stationary states and the flow-density relation

Notation2.1. By C; we mean the ith car and C? the ith car at time ¢. x!T! — !
is called the velocity of C! and denoted by v{. ! , — ! — 1 is called the
headway of C! and denoted by hf. Eq.(1) is then rewritten as:

vf = min(M, ht, hi™t) (2)

i =
with A!T' = hl +v!, | —v! by definition. Immediately we get A > vf, hi™' > vt

There are two apparent types of stationary states which satisfy this equation,
namely the “free state” that v = M,hl > M for all i; and the “r-uniform
state” that vf = hf =7 < M for all 7. Note that if we have a uniform state at
time ¢, which means v! = h! for all i, then hi~' > v! = h! for all 4, however
Zfil ht = L — N is a constant, so we conclude that all the inequalities should
be equalities and the state at time ¢ — 1 must also be a uniform state. This
shows that the uniform state is very unstable.

Lemma 2.2. The following inequalities hold:

(i) hfﬂ > Vi



(ii) hi“ > min(M, hf+1»hf+i)
(i) o' > min(ot,,, o)

ProoF. (i)

RTY = hi+ ol — ! (by definition)
U§+1 (for hi > v})

\%

(i) by (i) we have hit' > of | = min(M, ht, . hf_&)
(i)
it = min(M, AT BY)
Vi1, hp) (for AT >0y by (1))
vl 1, min(M, kY, b~ )
1 v;) (by Eq.(2))

Corollary 2.3. min{vt|i €Z} ( the minimal velocity of cars at time t) is a
nondecreasing function of t.
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PRrROOF. Use (iii) of lemma 2.2.

Briefly speaking, this corollary shows that there is no spontaneous jam formation
in model(1).

Notation2.4. We use 7; to denote this min{v!|i €Z}.

Obviously, the slow-to-start effect appears in an accelerating process and result
in a nontrivial low speed. The definition below focuses on this phenomenon and
clarifies the main object we investigate in this paper.

Definition2.5. If one of the following conditions is satisfied, we call C} an
a-front for 0 < o < M.

(i) vf =

(i) vf = a, h >«

Note that the two conditions are incompatible. We say the front is type A
when (i) is satisfied and type B when (ii) is satisfied.

Lemma 2.6. If C! is an a-front, then C+1 07“ C is a [B-front with § < a.
More precisely, when C! is a type A a-front, C 1 must be a type B y-front with

v < a. In the case C! is type B, we have C’i as a type A a-front or a type B
d-front with § < a.

PROOF. (i) When C! is type A:
Let 'y = vH_ll, and we have a = hf > ”z+1 =1, hf—&-l >vp >« >, 80
ct- +1 is a type B v-front.



(i) When C! is type B:
We have v! = a < M,ht > v} so v} = a must be equal to hl~' since
v! = min(M, ht,hi™1). Then (a) v!™" = a or (b) v!™! < a. Ifv!™! = q,
then o < ht = i~ —vl™1 4 vf_?ll = vf_?ll and we can say C!~ ! is a type A
a-front. If § = Ufil < «, the condition for Cit*1 to be a type B d-front is
then satisfied.

Definition2.7. Let F; be the set consists of all fronts at time ¢. Lemma 2.6
suggests that we can define a front map ¢; : F; — F;_1 like this:
cioh o if CF is type A
¢ ty— J Yt i
For Cz € Fy, let ¢t(Cl) { Cit,l i Cvt is type B
We also define G; to be the set consists of all 7;-fronts at time ¢.

An example is shown in Fig.2 with L = 40,N = 9,M = 4, from time point 0
to 10. We can see the concept “front” somehow corresponds to “the front of a
jam”, and the front map somehow joins the fronts of “the same jam”.

0o: __1 2 A_A_S_ ____A__7 A9
21: 9 1 2 B__B S___B 7_B____
02: 9 1__AB___ 4 A__6____A8____
03: 9 1 B_B 4___B 6B 8
04: 8 9 AB___ 3 ____ 4 S __A7_____
05: 8 °9B_2 ____ 3 _ 4 SB____7_
v6: __7________ 8__A_B 2 3__4A6______
07: 7 8B__1 2___34B 6__
08: _6 7___A_B 1 23AS_______
09: 6 7B_9 ____ 1 _23B____S5S___
18: S 6 A_B 9 12A4

Figure 2: An example. The 9 cars are denoted by numbers from 1 to 9, or by alphabet A
(resp. B) when it is a type A (resp. type B) front.

Lemma 2.8. ¢¢|q, : G+ — F;_1 ( the restriction of ¢ to Gy) is an injection.

PROOF. If this is not true, we can assume that there exist C! and C!,; in G,
such that ¢¢(CY) = ¢¢(C!, ). That means C! is a type A 7-front and C!,, a
type B m-front. C! to be a type A 7-front implies v, ; > 7 while C!_; to be
a type B 7-front implies v} 41 = 7t That is a contradiction.

Note that if 7» = 7¢_1, then by lemma 2.6 the image of ¢¢|g, liesin Gi—1. ¢ is a
nondecreasing function of ¢ by Corollary 2.3, and it is an integer less than M, so



it becomes a constant when t > 0. We write the constant 7. If 7., = M, the
traffic is free. If 7., < M, Gy with ¢ > 0 is empty precisely when hf = v} = 7,
for all 4. This uniform state is trivial so we assume that G; # . Then lemma
2.8 implies that #G; ( the cardinality of G;) is non-increasing when ¢ > 0.
That means we can assume #G; to be a positive constant when ¢ > 0.

Definition2.9. Let C! be a 7-front. The preceding 7-front of C! is the 7-
front C% with j > 4 such that no other 7-front exists between C} and C%. We
say C! connects properly to a T-front Cf if for all i < k < j, the following
conditions are satisfied:

1. If C! is type B, then hl < M and C!,, is not a type B 7-front.
2. If vj,, = 7, then the following (a) or (b) holds:
(a) T<ht'=hl+7—0vl <Mandhi, =T
(b) hl =vj > .
3. If v}, # 7, then hj + 7 — v}, = M.
4. If k> i+ 1 or C! is type B, then v} should be M unless the (2b) case.

Lemma 2.10. If a 7-front C} connects properly to a -front C%, then vj, > T
foralli <k < j, and C} is the preceding front of Cf.

PROOF. When k = i+1 and C is type A, then v}, > 7 by definition. In the case
k > i+1 or C! is type B, condition (4) and (2b) implies v}, > 7. Now we assume
vi, = 7. Condition (4) says that this could happen only if v}, = hj, =7 = v} .
So C} is not a 7-front.

Roughly speaking, a proper connection structure looks like several successive
cars with headway 7 and velocity 7 preceding several successive cars with head-
way 2M —7 and velocity M. The next lemma shows that this structure somehow
repeats itself after two time steps.

Lemma 2.11. If a 7-front C! connects properly to its preceding T-front C'Jt-,
then for all i < k < j, we have x}t? = Tho +T— 1oit? = V. Moreover,
if CLtY and CLtY are T-fronts satisfy ¢u1(CHT) = Cf, 111 (CLTY) = CF, then
CLT conmects properly to CLH1.

ProOF. First we use (iii) of lemma 2.2 to get vy™" > min(v}_;,vf) > 7. We
prove the first part of this lemma by dividing it into the following cases. In each
case we basically calculate b}t by hit! = hf — o} +v! | and /"' by Eq.(2).
2}t = !, +7—1 holds precisely when v} +v}™" = hl +7. Then we estimate

hiT2 by hit? = Rt — ol pottl > Rttt 4 and get v}t by Eq.(2).

k+1
(i) k=1 and C! is type A:
Note the definition of a type A front and we have =l v =71
and v! +v/"! = hl + 7 can be checked. hlT? > At so v/ T? = AIT =0t ;.

t+1 t+1
hi



(i) k=1 and C! is type B:
The definition of a type B front implies Ryt = ht+ot,, —7 > A, condition
(1) says M > ht, so vitt = ht and vf +oft! = bl —|— 7 can be checked. If

i+ 1 = j, then C’t must be type A so we have vl , = vfill = 7, then

ht+1 = R AT = oft? = 7 =l . Ifi+1 < j, by condition (4),
vl =M or C’+1 satisfies (2b). In the former case, hi™' > M, hl™? > M

t+2 t+1 t+2 t
so v;™* = M = v},,. In the latter case, we have v;7; = 7 so h;"* = v},

and vt+2 hit? = fo.

(iil) k> i+ 1,vk+1 =T
If condition (2a) is satisfied, we have h}fjl < M and h?jl < hl since vl > 7.
So vyt = Attt = hf + 7 —v}. From hl_ , =7 and v}, > 7 we calculate
inll =780 bt =rand vt =71 = v}, - If condition (2b) is satisfied,
we have hi' =7 and vjt' =7 by > T so vptP =T =) .

(iv) k>i+ 1,0 #
Condition (4) says that vj,, = M or C}, satisfies (2b). In the former
case we have hl™' = 2M — 7 by condition (3), then v = M. htt? > M
sovpt? =M = Vi, In the latter case, Rt =M -7+ Vi, > M and

vitt = M. Since Cl4, satisfies (2b), we have just showed in (iii) that

vjt =7, which implies A} = v}, and so v;"? = v, .

To prove the second part of this lemma, we simply check the four conditions

for all p < k < ¢. (1) If CL*! is type B, that means p = 4 and Cf is type A

by lemma 2.6. So hlt! = ol < M. If vf_tll = 7, then ht+1 must be 7 since

R and T = vti% = min(M, hl, ,, hfﬂ) That means C’tﬁ cannot
be a type B 7-front. (2)(3)(4) As p < k < g impliesi < k < j, we summarize the

preceding calculation results here: If (ii) and i+ 1 = j, we have vt“ = ht+1 and
inll = 7; If (i) and i + 1 < j, we have hi™ — ot 47 = Vhys Wlth vh =M

or vjth =7 = hit}. If (iii), we have vt+1 = ht+1 and vyt = 7. If (iv), we have
t+1 __ t+1 t+1 t+1 _ pt+l
v =M, b — v + 7 =)y, with v, = M or vk_H = th (Note

that C! must be type B when k = i, and we can assume hk+1 =T if ’Uk+1 =T,
for 0therw1se Ck+1 is a type B 7-front so we have k+1=jand k=q¢=j—1).
In any case, (2)(3)(4) hold.

Definition2.12. A 7-congested state is a state that contains at least one
7-front and all its 7-fronts connect properly to their preceding 7-fronts.

Corollary 2.13. If we have a T-congested state at time t, then the state at time
t+ 1 is also a T-congested state, and xi™* = at +7-1, vit? = vl for alli.

PROOF. Take an arbitrary 7-front C}. By lemma 2.11, what to prove is that
we can find a 7-front C{t! satisfies ¢, 11 (C}T) = C!. This can always be done
when C? is type A since then Cf“ is automatically a type B 7-front. Now
assume C! to be type B. C! is properly connected, so we can apply condition
(2) to C!_, and get ht_, = v}, > 7, that means h!"] = v/T} = 7. On the
other hand, lemma 2.10 says v{,; > 7, s0 A" = ht — 7+ 0!, > h! > 7, and

hence vtJrl > 7. Now we can say that CtJr is a type A 7-front.



Using the density p = N/L, we can represent the flow Q of a 7-congested state
by p as:

N 2 N N(r—1)+L _ —
Q= ﬁ Zi:1($§+ —z) = ﬁ Zz‘:1(w§+1 —ai+T—1) = (TZL) = Tlp""%'
Since the headway of a car in a T congested state is always between 7 and
2M — 1, we have 53—+ T+1 <p< T+1

Theorem 2.14. Every state finally evolves to one of the followings:

(i) a free state.
(ii) a T-uniform state.
(iii) a T-congested state.

PROOF. As we have discussed above, if not the (i) or (ii) case, we can assume
that 7 = 7o = 7 and #G; is a positive constant at time ¢ > 0. Now we prove
it to be the (iii) case. Since #G; is a constant, if we have a type B 7-front at
time ¢ there must be a corresponding type A 7-front at time t + 1 (and vice
versa). Then by lemma 2.11, once at time ¢ a 7-front C connects properly to its
preceding 7-front, there will always be a 7-front corresponds to C! which also
connects properly to its preceding 7-front after ¢t. This verifies that we can only
consider a type A 7-front C! and its correspondences at time ¢+ 2, ¢+ 4, etc. to
see if it connects properly to its preceding 7-front at last. We enumerate some
cases at the beginning in which the type A 7-front C? connects to its preceding
just properly:

o bl <M+l —7 vl =1
In this case, if hl , = v, |, then the condition (2b) in definition 2.9 is
satisfied for k = i + 1; otherwise if h! ; > v! |, we have hl , = 7T since
the type B 7-front C} , will not have a correspondence at time ¢ + 1 if
ht, 4 > 7, so the condition (2a) in definition 2.9 is satisfied for k =i + 1.

® higg=M+vji —Tv0=hi, v 3=".
In this case condition (3) in definition 2.9 is held for k =i 4 1.

o hl, —M—&—vf_H T,’UH_Q =M, hH_2 <2M — T, 5 =T.
In this case if hl , > v!, ,, then hl 4 must be 7, for otherwise the type B
7-front C?, 5 will not have a correspondence at time ¢ + 1. So condition
(2a) is satisfied for k =i + 2.

. hHlanLle T >i+2,0L = Mkl =2M — 7 forall i+2 < k < j;
t
vj+1 h]+1’ ]+2_T

° hH_1 —M—i—le—T;jzi—i—Zv}c:M,hZ:2M—Tf0ralli+2§k§j;

t
U]+1—Mh]+1<2M—T,vj+2_7-_

The last two are similar to the above. Now before considering C! in the
following cases, let f denote v} ;, and confirm that C} is correspondent to

t+2 it t+6 t+2 t+4 t+6 _
C 1, C 5, Chg, . owith v, "] =v 75 =v, 3 =...=f.



(i)

(iii)

b, >M+f—r:
We have hfﬂ > ht g +7—0vl > M, so vﬁ% = M, and we calculate ht? =
M + f — 7. That means the correspondence C’t+2 has Rit2 = M + f — 71
and hence the (iii) case.
ht 1 <M+ f—m
If v} Lo =T, C! connects to its preceding properly. If vf,, > 7, we have
hfﬁ>hz+1 — f,and Al > bl +7 — f since v}, > 7, and M >
h2+1+7'—f since ht,; < M + f —7. Sov/f] > hl,, +7 — f and we
calculate h!t? > hi +1- That means the correspondences of h! ; at time
t+2,t4+4,t46, ... (i.e. h’”r2 h’fr‘ll, h?g, ...) strictly increase until M+ f —7
or until the correspondent front connects to its preceding properly.
i, =M+ f—r
First check that hl,; = M + f — 7 implies A" = M + f — 7. And if
vi7y # M, we can consider the correspondent front C/*7 with v!f] = M.
So it does not matter to assume UH_Q = M. Then hf_é > vf+21 = M, so we
have vf, , = min(M, h!,,). Now consider the following subcases:
(a) hi o, >2M —7:
We have ht‘|r2 =2M — T, vfif =M.
(b) M <hl,, <2M—7’
If vf+3 = 7, C! connects to its preceding properly. If v} 5 > 7, note
that vf, , = M and do similar calculation as in (ii), we have ht_s_1 >
hlis.
(c) hi , < M:
If v/T) = 7, we have hl,, = 7 or h!T) = 7. In the former case, C!
connects to its preceding properly. In the latter case, v}, 5 must be 7
since v}, , = hl , implies hH_2 = !, 5. Then again C} connects to its

preceding properly. If vfigl > 71, we calculate hiﬁ = vl+2 - T+ vff_% >

Vipa = hiys-
Anyway, we will finally find a correspondence C{*2" such that h{{3" =

2M — fi%"n = M if C!T2™ did not connect to its preceding properly

for all O < m < n. Next we consider the general case:
v =M, hiz?M—Tforalli+2§k§jWithaj>i+2
First check that this condition will be inherited by C!*7 as vit2 = M,
hf:fl =2M — 7 for all i + 2 < k < j. Similarly we can assume vﬁﬁl =M
and have v}, ; = min(M, h, ;). Consider the following cases and calculate
just as above:
(a) hfyy >2M — 1

We have h%*? = 2M — 7, 0! = M.
(b) M<h§+1<2M

If v,y = 7, Cf connects properly. If v}, , > 7, we have ht+2 > hh, .

(c) Rl < M:
If vtii =7, C! connects properly. If vH‘l > 7, we have ht"'2 > h]+1'



So if C! has not connected properly to its preceding yet, we can then
consider a correspondence C’ffﬁ” such that v,t:fn" = M, hztzln =2M — T
foralli+2<k<j+1.

Since the number of cars is limited, we conclude that C! will finally connects
properly to its preceding 7-front.

Using theorem 2.14, we can now calculate the flow- density relation at time ¢ > 0.
Obviously, a free state has a @ = Mp for p < and a 7-uniform state has

M+1
aQ =r7pforp= T—_H. And we have calculated the ﬂow density relation of a
T-congested state as Q = T51p +3 L for ST T+1 <p< T+1 This is the result

we have shown in Fig.1.

3. Stabilities and an O(IN?) algorithm
The next two lemmas show a remarkable character of model (1).

Lemma 3.1. Assume vffl > «. Then hf < 2M — « implies hﬁ“ <2M — «

PROOF Consider the three dlﬁerent cases of v
vl — vl = ’UH_l < M. (ii) vf = M. Then htJr1

(i) v} = Al™'. We have ht = hi™! 4 U1+1 v;

by assumption. So hﬁ“ <hl+ M —vl <2M — a.

. (i) v = ht. Then h!*t = ht +
hf+vz+1—M<ht<2M a.
<

-1 ht= 'Y M-a=v'+M-a

Lemma 3.2. Suppose we have a type A a-front Ct and assume that vf % >

a,vfjr'll > «. Then the necessary and sufficient condition for C”H'1 to be a type

A a-front is a < ht_| <2M — .

PROOF. Necessity: If a > hl_,, we have v/} < a so hiT1 which means

hH'1 > UH'f and hence Ct+12 is not a type A front. If 2M — o < h!_,, we have

K3

A2 > o since v, < M,v!T] < M. So C!*7 is not a type A a-front.
Sufficiency: Flrst note that vfi% > « implies h§+2 > hf-+1 and since hf“ =
t+2

ht+2

> «a. Next we consider the following two situations and

show in each case h!T] = v/*} = a.

(i) a <ht_; <M.
This case, we have vf_l > « since both ht 1 > vt 1 > o and hZ 12«

So we calculate hit] < hf_, < M which 1mphes vt“ hitl and hit?
t+2 _
v, =a
(i) M <hl , <2M —a.
If vf_ 1—Mwehavehf+i < M. Orif v, = hi~1, then hl_, = h!
i ol < BT M—a = vl +M—a, so again hiT ] = bl +a—v!
M. Slnce h 1 > M, we have v/ 1] = htJrl and hiTT = vff =a.

er1>ozwegetv

1
1+
1

t—
i—
t
i—

IN

Combining lemma 3.1 with lemma 3.2 we get the next lemma.
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Lemma 3.3. Suppose CHIC to be a type A a-front with k > 1. Assume that
fif“ >a and vt >« for all 0 < s < k. If there exists 1 < r < k such that

RITT < 2M — o, then C!FY2 s a type A a-front.
The proof is obvious.

Lemma 3.4. Suppose C’“‘k to be a type A a-front with k > 0. Assume that
vfif“ >« and ”UH'S >« for all0 < s < k. Then the necessary and sufficient
condition for iti'f'ﬂ to be a type A «-front is that xt"'k xi -1 <ol |+

(k+1)M —

PrROOF. Necessity: It is easy to check that if Ct+k+2 is a type A a-front then
22 must be 21 7F +a— 1. On the other hand we have /™2 =zt | +of |+

S <al ol (k+ )M soaltF—at —1 <ul 4+ (k+ 1M —a.

Sufficiency: In the case k = 0, the assumption is v/T} > o, ht_; < vf_; +

M — a,v!_; > a. First note that v“‘l 2 « implies vt+k+2 > . If ht 1 <M,

we have hiTl < bt | since Uf_l > a =, then v/} = hlT1 If Bt > M7 we

have hf‘*‘} < M since h!_; <wv! | + M — «, then again vt‘H hH'l Anyway,
v“‘l ht+1 implies hff UH'f = .

In the case k > 1, assume Ct+k+2 is not a type A a-front. Then by lemma 3.3

we have Rt > 2M —afor all 1 < r < k. In particular, we have hf_, —a+M >
ht_ —vt  +vf=hlT] >2M—asoht 1>M thenva“l“:Mforalllgrgk.
That means z/tF — 1 = 2!TF 4 pith > (ot 4ol |+ (k—1)M) + (2M — «)
which leads to a contradlctlon

Remark3.5. In fact lemma 3.4 is true even when &k = —1. For this case, the
expression z/tF — gzt | 1< vf_l + (k+1)M — a becomes hf_; <v! |, on the
other hand we have h!_, > v!_; and hl_; > v!™' = o! = @, so it is equivalent
to bl =0l | > a, Wthh is the necessary and sufficient condition for C/* to
be a type A a-front.
Furthermore, if Ct+k+2 is not a type A a-front, the proof of lemma 3.4
actually shows that vt” M for all 1 < r < k4 1. So this case we have
g2 — gt ol (k+1)M for k > —1, and 0! = min(M, hITEF?) for
E>0.

Deﬁniti0n3.6. We say a type A a-front Cf remains to C;_j if for all 0 < j <
k, C’fffj is a type A a-front.

If we somehow know the information about a type A a-front C’f"‘k at a future
time ¢ 4+ k, then lemma 3.4 provides a way for us to predict whether the front
remains or not through the information at the current time ¢. If the front
remains to C;_1, we get the information about C’H”“+2 Even not, we also have
A2 and v!TF*2 by remark 3.5. This will be actively used in section 4 to
investigate the detailed behavior of a front. Here we only pick up an outstanding

specialization.
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Corollary 3.7. Suppose C} to be a type A T-front. Then C! remains to C;_y,
precisely when x} —xf_; < j2M — 1+ 1) +vf_; — M for all 0 < j < k.

PROOF. Since we are thinking about a 7-front, lemma 3.4 can be freely used
without care about the estimate of velocities. Note that if C¥ remains to C;_;,

t+25 _

. =y
mff?ﬂ — xﬁ_j_l —1<wv! ;4+(2j+1)M —7; by lemma 3.4. That is the expression
rt+j(r—1)—at —1<v]  +@2j+1)M—roraf—af_; | <(j+1)(2M —

i—j—1 i

T+ 1) 4+vf - M.

then we have x zt + j(r — 1), and C! remains to C;_;_1 precisely when

Roughly speaking, this corollary means that we cannot untie an I-car-long 7-jam
unless there is an [(2M — 7 + 1) gap. In particular, the smaller 7 is, the more
difficult we untie the jam. Also, even one car with headway 7 can propagate
a jam in not so strict conditions. This can somehow be broken if we introduce
a driver’s perspective, but random generated, rather uniformly distributed cars
will almost always cluster behind the car with the narrowest headway.[14]

Theorem 3.8. If 7yiony = 74, then Too = T¢.

PRrOOF. If it is a free state or a uniform state at time ¢ + 2NN, the statement
is certainly true. So we assume Gyion # (0. Let 7 = 74, take a 7-front C,§+2N.
If C,§+2N is type B, since Tiyion = Trron—1, ¢t+2N(C,Z+2N) is a type A 7-front
by lemma 2.6. So it does not matter for us to change the assumption to:
Tt+aN—2 = T¢ and there is a type A 7-front in Gyyon—2. Under this assumption,
take a type A 7-front C}QHN*, let Cf = ¢yi10.. .oq5t+2N,3O¢>t+2N,2(CIZHN*Q).
By lemma 2.6, C! must be a type A 7-front, and C! remains to Cj, = Ci_n41.
Then by corollary 3.7, we have a2} — 2} ; < j(2M — 7+ 1) +v}_; — M for all
0 <j <N —1. In particular, 2} — z}_y,; < (N —1)(2M — 7+ 1). By the
periodic boundary condition, C}_ is a type A 7-front identical with C!, so we
have x}_y ., = x!_y 4+ 7 =x} — L+ 7. This implies L < N(2M — 7 +1). Now
take an arbitrary integer pN 4+ ¢ > 0 with 0 < ¢ < N — 1, use the periodic
boundary condition we get z} ,n — 2} ,n_, < ¢2M =T+ 1) +0vf N, — M
soxf —af_,n_q <PLA+q2M =7+ 1) +o_,ny_,— M < (pN +q)(2M — 7 +

1) + v ,n_, — M hence by corollary 3.7 C} remains eternally.

Theorem 3.8 provides a way to calculate 7, within limited steps: 73 will not
change further if it did not increase within 2NV steps, and » < M. So we
simply calculate 2M N time steps then 7o)/n must be 7... Every time step
has a computational requirement in proportion to N, so this algorithm has a
computational requirement in proportion to N2. However, this method is far
from elegant and depends on the periodic boundary condition. In next section
we will develop a smarter and more precise way to predict the behavior of fronts.

4. Minimal fronts and strictly minimal fronts

Definition4.1. An a-front Cf being minimal means that A} > « for any s > ¢.
If the inequality holds strictly, we say the front is strictly minimal.

12



Evidently, a 7-front is always minimal.

Lemma 4.2. If an a-front C! is minimal (resp. strictly minimal), then ¢:(CY)
is minimal (resp. strictly minimal). Or more generally, let C§_1 = ¢.(CY),
then hi > a for any s >t if C! is minimal; the inequality strictly holds if C! is
strictly minimal.

ProoOF. If C! is type B, this is obvious because ¢;(C?) = C~*. Now assume
C! to be type A, so ¢(C!) = C’f;ll We prove that if there exists an s > t such
that h$,; = § < a, then h{"> < § (this implies § = o when C! is minimal, and
leads to a contradiction when C? is strictly minimal):

Since C! is minimal, we have hl > « for all r > ¢, so v > « for all r > ¢.
And C! is a type A front so hl™' =v!,; < M < 2M — a. Then by lemma 3.1,
we have h] < 2M — « for all r > ¢t. In particular, A < 2M — a. Now do the
following case division which is similar to the one in lemma 3.2:

(i) Ha<hi <M:
Since v > o we have h{ ™! < hf+h$,  —a = hi+d—a < h§,sovf T = AT,
then A{*? = o < hi, =4
(i) U M < hi <2M —
If vf = M we have h{*" < M. Orif vf = hi™", then h{ = h{ ™' + i} —
VST < RET 4 M —a =08 + M — o, so again hiT! = h¥ +a —vf < M.
Since h§ > M, we have v;™' = hi™" and hence h{*? = v} < hi , =4
Corollary 4.3. 74 = 7o if and only if there is no strictly minimal T¢-front at
time t.

PROOF. Necessity (Need the periodic boundary condition): If there is a strictly
minimal 7-front C}, we have h{ > 7 for all s > ¢ + 1. Using (ii) of lemma 2.2,
we get h;_; > 7, for all s > t 4+ 3. Do this repeatedly and note the periodic
boundary condition, finally we get hj > 7, for all s > t+2N —1 and all ¢. That
means Too > Tg.

Sufficiency: If 7., > 7, there exists an s > t such that 7441 > 75. Then all
Ts-fronts in G are strictly minimal. Take a C} € G, the front ¢s410...0¢5_10
¢s(C?) € Fy is strictly minimal by lemma 4.2.

Notation4.4. Let S; be the set consists of all minimal fronts at time ¢. Use
@iik to denote the map ¢;_j410...0¢;_10d|s, : St — Si_r. P! is understood
as the identity map of S;.

Lemma 4.5. Suppose C! to be a type A minimal a-front. Then we have:
1. vy > « for any s > t. If C! is strictly minimal, the inequality holds
strictly.
2. If C! remains to C;_1, then Cfff is minimal. If C} is strictly minimal,
CI*? is also strictly minimal.

42 t+l ¢
3. v, =hT = v,

13



PROOF. (1) Since C! is type A, by lemma 3.4 we have hi ;> a for any s > t.
So v, > a holds for any s > t. (2) Since hj > o for any s > ¢+ 1, using (ii) of
lemma 2.2 we get h{_; > « for any s >t + 3. (3) Note that vfi% > « and this
can be checked by simple calculation.

Using lemma 4.5, we find that the condition vfﬂ““ > « in lemma 3.4 is always

satisfied if we assume C!™ to be minimal. Then using (iii) of lemma 2.2 to
estimate the velocities, we get the following generalization of corollary 3.7.

Corollary 4.6. Suppose C! to be a type A minimal a-front and assume v}_ ;Z
a for all 0 < j < k. Then C! remains to C;_j precisely when xt — z! _; <
J@M — 7 +1) +vj_; — M forall0 < j <k.

PROOF. Since Cf is minimal, we have vj > «a for all s > ¢t. The assumption is
vf_j > o for all 0 < j < k. Using (iii) of lemma 2.2 repeatedly we conclude

vffj > aforall0 < j <kandall s> t. Sothe premise of lemma 3.4 is satisfied.

Now what happens if a front does not remain? Suppose ™" (k > 0) to be a type
A minimal a-front which does not remain to C;_;. If we have v{_; > « for all
t < s < t+k, using remark 3.5 we can get h!T¥"% and v!TF+2 = min(M, BITFT2).
If B = hiThF2 < TR 2 we find that ijf“ is a type A [-front. If not the
case, generally We cannot say more without some extra information about the
cars before CF 1. However, we will show that as for strictly minimal fronts, a
prediction indeed can be done since the situation becomes simple enough after
a specific time point.

Lemma 4.7. Suppose C! to be a type A minimal a-front. Then vfill < vt+3

If C! is strictly minimal, the inequality strictly holds unless vtj_ll = UHS M.

PROOF. By lemma 4.5, we have v!™? = p/t! = vl > o and Ufif > @, SO
t+2 t+1 t+1 o ot t+3 _ (pt+l 42 t+2 t+1
hi™= =hi" —a+vl] > vy, and by = (b — v T) (v — o) ol >
t41 Byt

(U Hence vy S

Lemma 4.8. At time t > 2M?, a strictly minimal front C! must be in one of
the following two cases.

1. A type A front with Uerl < M, yf_':_'ll =M;
Or a type B front with ht < M, vt = M,v"* = M.
2. A type A front with vf , = M;

Or a type B front with ’Ut+l M.

PrOOF. First we prove that if C7 = (bsH(C’,‘z“) and C,j“ is a strictly minimal
front, then C7 in case (1) or (2) implies Ciin case (1) or (2).

e (7 is a type A a-front in case (1):

Since Cj is type A, C’,ﬁ“ = C’;H is type B and h5+1 =i <M, v,iﬂ =

s+1 _

vity = M immediately follows. We have hit? > vit] = M, and apply
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lemma 4.5 to the type A minimal a-front C} we get viii > a, so hi*‘o’ =

hzﬂ—a—viw—f—M—i—vZﬁ = M—l—vfcif—a > M, that means vz+3 =M.

Hence C; is in case (1).

e C? is type B in case (1):
If j = k and C,j“ is type B, then vzﬁ = v]s_+2 = M, so C;H is in case
(2). f k=7—1and C’,ﬁ“ is type A, we have v,sci} = U;H =hj < M,
and vt} = 03T = M, so Cy*' s in case (1).

e O} is type A in case (2):
Then C’,‘:H = C;‘H is type B and we have UZ+2 = v;+2 =vj, = M by
lemma 4.5. So C; 1! is in case (2).

e C; is type B in case (2):

vj“ =M so C’;f“ cannot be a front. Hence k = j — 1 and C’,‘zﬂ is type

A, with fu,ii} = U;H = M. So C;™' is in case (2).
Let K, = <I>§_2M2+T(Cf). Consider the sequence K1, Ko, ..., Kope2. If we can
find a K, in case (1) or (2), then C! must be in case (1) or (2). Insert a dividing
line between K, and K1 if they are both type B. The total number of dividing
lines is less than (M — 1), because if we have K, as an a-front and K41 as a -
front, then basically 3 > «, and the inequality is strict if K, and K,1 are both
type B, which means this both type B case cannot happen more than (M — 1)
times. Now these less than (M — 1) dividing lines divide the sequence into less
than M parts, and since the sequence is 2M? long, we can find a part whose
length exceeds 2M . Every type A front in this part is followed by a type B front
and vice versa, so we finally found a 2M long sequence Ko, Kgy1,. .., Kotonr—1
with an A,B,AB,...type pattern. Then apply lemma 4.7 to K, = C¥, K40 =
cvt? CYt5,... we found that v¥T7,v¥+3 0¥*7 | increases to M at
last. Then the type A front K, iop 2 = Cgf?\/ﬁf with vgf?w]\i;l = M is in

case (1) if vif?\%_f < M, or in case (2) if vif%‘ﬂf =M.

Ka+4 =

Remark4.9. Now suppose t > 2M?, and C? is a type A strictly minimal a-front
which does not remain to C;_;. Assume we know hi™? and v/ = min(M, hiT?).

Then lemma 4.8 suggests all cases would happen:

(i) C!isin case (1). Let f = hl.
(a) If B = hl™3 < f, then C}T7 is a type A B-front, v/ T2 = f,v/*3 = M.
(b) If f < hi*2 < M, then i3 = 2!*2 — 1, C!*3 is a type A f-front,
it = M.
(c) Ifl M < hit3 < 2M — f, then 2/*3 = /™3 + M, CI*3 is a type A
~-front where v = hff% - M+ f, vf+3 =M.
(d) Tf b2 > 2M — f, then o2 = o3 = I3 = M.
(i) Cf is in case (2).

(a) If B = hl™3 < M, then C!*7 is a type A B-front, v!™? = M.
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(b) If b2 > M, then vi*? = 0!+ = M.

Readers are perhaps worried about how do we know a front remains or not when
the estimates of velocities do not hold? In fact this case is avoided well in our
algorithm. The mechanism is based on the following lemma, which suggests
that if we check from 0-fronts to (M — 1)-fronts in turn, things will go smoothly.

Lemma 4.10. Suppose C1 " (k > 0) to be a type A minimal a-front. If Ct_ is
NOT a B-front with 8 < a;, and C;_1 is NOT a type A strictly minimal ~y-front
forany s >t+1 and any v < o, then v;_{ > « for all s > t.

PROOF. Let § = min{h{_,|s > t}. Since C/** is minimal we have h$_, > «a for
all s > t+ k+ 2 by (ii) of lemma 2.2, so if § < «a, the minimum ¢ is gained
at a time before t + k + 2. Let r = max{s > t|hi_, = 0} and we find CI_,
to be a type A strictly minimal §-front if r > ¢ + 1. As this contradicts our
assumption, r must be ¢. This case, since C!_; is not a S-front with 3 < «,
we have v! < v!_; = hi_; = 4, but this implies A"} < § and contradicts the
definition of r. So we conclude that h}_; > a for all s > ¢ and hence v{ ; > «
for all s >t + 1. Furthermore, v!_; > « holds because if € = v{_; < « then
C!_| is a type B e-front, contradiction again.

Remark4.11. It is valuable to point out a special case.

First we make an understanding that for a type B a-front C¥ and a z > 1,
we say C¥ remains to C_, in the meaning that C’y's'1 is a type A a-front Wthh
remains to Cy_,.

Now let t > 2M?, let CI™*(k > 0) be a type A minimal a-front and C?_,

a type B strictly mlmmal B-front with 8 < a. Suppose C!_; remains to C;_,,
C?_, is not a type A strictly minimal y-front for any s > ¢ + 1 and any v < a.
We want to know whether C’;H'k remains to C;_q for any 1 < ¢ < p?

First we consider C;_;. Lemma 4.8 says there are two cases:

e C!_, satisfies (1) of lemma 4.8.
We have Ufff =M. So Cfff is not a front. Using lemma 4.10 we get
vi_, >« for all s > ¢+ 2. Note that k cannot be 0 because v! = M. For

k > 1, using lemma 3.4 we conclude that Cﬁk remains to C;_1 precisely
when x”k fff —1<EkM — a.

e C!_, satisfies (2) of lemma 4.8.
We have v/ 1] = M, so C}*] is not a front, then v{_; > a for all s > ¢+ 1.
Using lemma 3.4 we get the condition xt+k gt — 1< (k+1)M —

These two expressions can be unified to x?k H'l —-1< vf+1 + kM — a.
Now we consider C;_,. Note that the condltlon vz_l >« for all s > t+2 (or

s> t+1) is equivalent to hf_; > a for all s > ¢+ 1 (or s > t), so we use (ii) of

lemma 2.2 to conclude that the velocity estimates for C;_, automatically hold.

If C!_, satisfies (1) of lemma 4.8, we have vt+2q ' = v*! by lemma 4.5, and
Uﬁfsq = M by lemma 4.7; if C!_, satisfies (2) of lemma4 8, we have 11“'2(1 Vi
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by lemma 4.5. Anyway, the calculation is the same to the C;_; case. Note that
v = a4 (= DB - 1), and o = 2l 4 (g - (e - 1) if
Cf+k remains to C;_g+1, we get the condition for Cz-Hk to remain to Cj_4 as:
i — et 1 <ot kM —a — (¢ - 1)(a - B).

This expression shows that it is automatically determined by the index ¢
whether O™ remains to C;_,. Its analogue to the § = a case suggests the
following.

Lemma 4.12. Suppose C’Z-H'k to be a type A minimal a-front and C!_, a type B
minimal a-front. If Ct_| remains to Ci_,, then C*™* remains to C;_, precisely
when Cf+k remains to C;_1.

ProoF. This can be easily showed by lemma 3.3. Note that the estimate of
velocities automatically holds, and if C{_, remains to C;_s, then hiT) = a <
2M — «.

The next lemma is a crucial application of lemma 4.8 which essentially makes
the algorithm work.

Lemma 4.13. Let t > 2M?2. If C’f+k,0]t»+k € Siyr and i < j, then we
have ®t,, (CIF) # B, (CETF) unless the case j = i+ 1 and ¢y (CJTF) =
qbt+k(C’fIf). More precisely, if a type A front C; and a type B front Cgﬂ at
time s > 2M? are both minimal, then there does NOT exist a front C;"’ such
that ¢s11(Cyt') = Cp iy

PROOF. Let C) be an a-front and C;,; a B-front. Then we have 8 > a by
definition. Since Cp; is minimal, Ay .y > 8 > a for all 7 > s. Using (ii) of
lemma 2.2 we get hy, > « for all r > s +2. h;“ > « also holds because Cj is
type A. Hence C}, is a strictly minimal front which must be in case (1) or (2) of
lemma 4.8. v;ﬂ < M because Cy ., is a front, so it is case (1). Then we find

C;‘H to be a type B front with v;ﬁ = M. That means there is no front can be
mapped to Cp ;.

According to this lemma, if we restrict ], to G4 or to the set consists of all
type A minimal fronts at time t + k, then we get a one-to-one map. Moreover,
the reverse of this map can be searched like this:

For minimal front C!, if C! is type A, then we next go to C!™'; if Cf is type B,
then we go to Cffll when Cffll is a type A front, or to Cf“ when not.

Notation4.14. Notation for us to describe the algorithm.
o If O3 = ®}(C}), we say C} is mapped to C, or C} is an image of C}.

e For a minimal front C!, we say P(C!) is the domain of C! and define it
as P(C!) = {C;‘ﬂC’j = ®5(C!),0 < k < s}. Give a partial order “<”
between two minimal fronts as Cf < O3 < P(Cf) € P(C%). Note that
Cf < C¢ is equivalent to Cf € P(C3).
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e If a type A minimal front C! remains to C;_x but does not remain to
Ci_k_1, we define d(C?) to be CIT21 Similarly, if a type B minimal
front C! remains (remark 4.11) to C;_j but does not remain to C;_j_1,
we define d(C?) to be CIT2%. Anyway, d(C?) is a type B minimal front and
called the destination of C!. If Cf remains eternally, we say d(Cf) = oc.

e For a type B strictly minimal front C! which does not remain to C;_1, let
e(CH) = CI*1if CI*] is a type A front and e(CY) = CIH7 if O] is not
a type A front but C!*2 is. In other case, ¢(C!) is nothing. (cf. remark
4.9)

e Let X be the set of all cars at all time points and F' the set of all fronts.
ie. X ={CllieZ,t >0}, F =2, F;. For X' C X,F' C F, we say F’
is complete to X' if for any type A minimal front C! € X', there exists
a (minimal) front C¢¥ € F” such that C§ = ®§(C}).

Now we are ready to see the algorithm. We first show the main program and
prove its correctness, then show the details of the subroutine.

Algorithm4.15. First of all, calculate 2M? time steps and reset the time to 0.
e let Yy = Iy
e if Fy = () then it is a free or uniform state, end the program.
o fort=0to M —1

— let A, = {r-fronts in Y, }.

— subroutine:
calculate D, = {d(C})|C! € A, }. If oo € D, output 7o, = 7 and
R = {C! € A,|d(C}) = o}, end the program. If co ¢ D, find the
maximal elements of D, in the partial order “<”, put these elements
into Z,, and calculate Y/ = Y, \Uctez P(CY), E, = {e(CH|C! €
Z.1.

—letY, 1 =Y UE,.
e conclude 7o, = M, end the program.

PROOF OF CORRECTNESS. Let Xo = X and X,y = X, \ Ugtey, P(C)) if

K3
o0 ¢ D.. Obviously the elements of Ay are minimal, Yy is complete to X, and
there is no a-front in Yy with @ < 0. By induction, we can assume that the
elements of A, are minimal, Y, is complete to X, and there is no a-front in
Y, such that o < 7. If co € D,, of course 7o, = 7, and by the completeness
of Y., we can calculate all 7-fronts at time ¢ > 0 from R. Those 7,.-fronts
finally connect properly to their preceding fronts by theorem 2.14, so the final
stationary state is then entirely understood. Now we consider the co ¢ D,
case.
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(i)

(if)

(iii)

There is no type A minimal S-front with 8 < 7 exists in X, :

If we have a type A minimal G-front in X, it is mapped to an a-front with
a < (in Y, since Y, is complete to X.. However, there is no a-front in Y
such that o < 7.

Too > T

Since oo ¢ D, we can select a time point s > max{t|C! € Z,}, then there
is no type A minimal S-front with 8 < 7 exists after time s by (i). We
will show (8 cannot be 7 either. That is because if such a [-front exists,
it is mapped to a C] in A, and so C} remains to a time after s. That
contradicts the definition of s.

Elements of Z, are strictly minimal:

Take a C! € Z, and assume § = min{h$|s >t} < 7. The elements of A, are
minimal so by lemma 4.5 C'it is also minimal. Then § = 7. Since 7o, > T,
we can take r = max{s > t|h{ = ¢} and find C} to be a type A minimal
7-front. This contradicts the definition of Z,, for we have C} < C7, and
C7 is mapped to a front C in A, then d(C¥) = Cf = C}.

For any C! € Z,, let s be such that C3 , € X, and C:7! ¢ X,, then
vl =M forall s+1 <r <t (i.e. the “left border” of P(C}) is coated by
a “velocity M wall”):

If t = 0, there is nothing to prove. If £ > 0, then C’fﬁl is a type A minimal
7-front. If s = 0, then Cj_; € Y7, so C7_; is not an a-front with o < 7.
Then by lemma 4.10 we have v]_; > 7 for all » > s, and since Cit*l does
not remain to C;_1, we have v]_; = M for all s+ 1 <r <t by remark 3.5.
If s > 0, C’is:ll must be a type B strictly minimal §-front with 8 < 7 by
(iii). Since C!™' € X,, wehavet—1>s—1 (thet =s—1ort = s—2 case
is avoided since C 7' is strictly minimal and by lemma 4.8). So as we have
discussed in remark 4.11, we also have the velocity estimates and then can
use remark 3.5.

Y, 11 is complete to X, 41:

Y is complete to X, and so complete to X, ;1. Then for any minimal type
A front CF € X;41, there exists a Cf € Y: such that Cf = ®((C5). If
Ch € Y 41 there is nothing to prove. If C] ¢ Y, i1, since Y 41 D Y7\
UC}eZT P(CY), there exists a Cf € Z, such that C} € P(Ct). On the other
hand CF ¢ P(Cf), so we can find a s < u < r such that ®¢(C?) € P(C})
and ®1(C3) ¢ P(CY). Let Cf* denote ®%(C3). If 941(C3) = Ci! (ie.
C} is at the “left border” of P(C})), then I =4, so C* must be C! by (iv).
If @U+H(C5) = Cp*Y (ice. C* is at the “right border” of P(CY)), then C}'
is an image of CY, so by lemma 4.13, again C}* must be Cf. Anyway C} is
an image of C, and now e(C?) is the first type A front mapped to C!, so
we conclude that e(C}) is an image of C?.

There is no a-front with o < 7+ 1in Y, 41:

Because A; C Ugtey P(CY), so there is no 7-front in Y/; and every element
in E; is a type Al’y—front with v > 7.

Elements of A;;1 are minimal:

Take a C! € Ar41 and assume § = min{hf|s > t} < 7. Since 7o > T,
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Now

we can take 7 = max{s > t|hf = ¢} and find C7 to be a type A minimal
O-front. Since Y,y is complete to X,41, C] is mapped to an e-front with
€ < in Y;41. However there is no such an e-front by (vi).

we have accomplished the induction and finished the proof.

In fact, any a-front lies in P(C})(C! € Z,;) with @ > 7 cannot be minimal,
so this algorithm actually calculates the behavior of all minimal fronts.
Now we are going to see the details of the subroutine.

data structure: The SET structure is a collection of Cs, we can delete
(resp. add) an element from (resp. into) the collection. Also, it has an
index %, for a SET S, we can use the method S.get(i) to get an ith car
C! in S. If there is no ith car in S, the get method return null. The
method S.delete(i) deletes all ith cars in S. Using “for each C! €S” we
can enumerate all Cfs in S from small i to large 7, when i is the same from
small ¢ to large ¢, in turn. Let A, and Y, have the SET structure.

initialization: keep an array (x;,v;,t;) with index ¢ in the memory,

initialize (z;,v;,t;) to be (z9,vY,0) for all 4.

27 710

subroutine begin
let ippey=null,Cprep,=null

To avoid the technical difficulties due to the periodic boundary condition,
here we normalize the index i of all C! € A; to 0 <4 < N — 1. Then
we double A, in the meaning that if C! € A, with 0 <i < N — 1, then
Cl n €A

7

for each Cf € A,

— if § = tprer, then:
if d(Cprey) = 00 then conclude d(C}) = oo, next CY.
else, we have d(Cprev) = Ci_,, delete Cprey from A;, redefine
(4,8,2) = (i — p,t + 2p,zt + p(7 — 1)). (C! remains to C;_,, verified
by lemma 4.12)
— redefine iprey = iy Cprey = CF
— if C! is type B, then: (this case, ¢ must be 0 by definition of Y7)
if C! does not remain to C;_1, then conclude d(C?) = C!, next C?.
else, redefine (j,s,2) = (i — 1,t + 1,2 — 1)
— while x — Tj—1— 1 S Vj—1 + (S — t]‘,1 + 1)M — 7 do:
(C! remains to Cj_1)
x If A;.get(j — 1) is not null then:
we have A;.get(j — 1)=C} 4,
if d(C}_,) = oo, then conclude d(Cf) = oo, next Cf.
else, we have d(C}' ;) = C}’, delete C}' ; from A,, redefine
(j,S,l‘) = (] _Q7S+2(Ia'r _q(T_ 1))
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x else redefine (j,s,2)=(j—1,s+2,2+7—1)
x if j <i— N, then conclude d(C}) = oo, next C!
— conclude d(C}) = C;*!

e Now we can “undouble” A, by delete all C! € A, whose index i > N.

e D. is obtained. if oo € D,, then output 7o« = 7 and R = A, end the
program. else, Z, = {d(C!)|C! € A, }.

e For every C! € Z,, calculate e(C!). If t = 0, we simply check the data of
time 0. If ¢ > 0 then C’f_l is a type A strictly minimal 7-front, and we
have done the calculation in remark 4.9.

e Refresh (z;,v;,t;) and calculate Y/: For every Cf € A, with d(C}) = C}

if C! is type A, redefine (x;_q,vi_g,ti_g) = (2t +27 4+ q(1 —1), 0172 t +

2+ 2q) and Y,.delete(i — q) for all 0 < g < p; if C} is type B, redefine

(TigyViegs ti—g) = (xt+T+q(T—1), 0T 4+ 1+2¢) and Y; .delete(i —q)

for all 0 < g < p.

e The refresh of (x;,v;,t;) is verified by the calculation in remark 4.11, and
now the modified Y; is just Y.

e subroutine end

About the computational requirement of this algorithm, note that #FE, <
#D, = #A,, so #Y, 11 < #Y,; < #Yy < N. One time the subroutine runs,
the while do loop runs less than 4N times, because once we found C} remains
to Cj_p, the [i — p,i — 1] interval is then skipped afterward. Similarly, the
(zi,v4,t;) refresh loop runs less than N times, because for every two Cf,CJS»
in (modified)A, with d(C}) = Cf_,,d(C5) = C}_,, the interval [i — p,i] and
[7 — g, 7] are disjoint. So we conclude that this is an O(N) algorithm. Besides,
corollary 4.6 and remark 4.11 just can be used for optimizing the subroutine.

5. Summary and further discussion

We have classified all stationary states of Eq.(2), and proved that every
state finally evolves to a stationary state if we assume the periodic boundary
condition. The results about the “stability” of a 7-front show that the smaller
T is, the easier the front remains. Tools to investigate the detailed behavior
of fronts are developed, briefly speaking, after a specific time point, strictly
minimal fronts emerge in a clear shape and then dominate the time evolution
of cars. We think these results grasped the main characters of model (1).

All these characters are described with the concept “front”, which focus on
the non-trivial behavior of cars in an accelerating process. We think this is
an important concept for us to analyze traffic CA models in Lagrange form.
For example, there is another widely used (such as in the NS model) effect
which is considered to be associated with the inertia of cars. It requires that
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v! < w7t 41, i.e. the acceleration cannot exceed 1. This effect however does
not result in multiple branches in the fundamental diagram, and we find that
if the term hf_l of model (1) is replaced by vf_l + 1, the process for successive
cars with headway 7 to accelerate from velocity 7 to the free speed M always
leads to successive cars with headway M, but not the characteristic headway
2M — 7. We think analysis focused on such kind of behavior can reveal some
nature of a traffic CA.

Now we are going to propose a generalization of model (1) which takes in a
driver’s anticipation. A kind of generalization is proposed by Nishinari,[12] but
with too many terms to avoid a collision. Our generalized equation is written
as:

= min(Ma hfa hf_l) (3)
= min(M,u} + [aiu§+1 + Bi]) (4)

<
ST Sl

hf and Uf are as above. «a; and (; are real numbers such that 0 < «o; < 1,0 <
B < 1. [] is known as the Gauss function, [z] represents the maximal integer
which does not exceed z. Let a; = 3; = 0 for all ¢ we get Eq.(2).

Proposition 5.1. There is no collision in this generalized model.

PrOOF. What to prove is that hitt = bt — vf + vf,, cannot be negative. If
vl,, = M, this is obvious. So we assume v}, = ul | +[oip1ul o+ Bip1] > ul .
ht > ! by Eq.(3), vf < ul + [oyul,, + 5i] by Eq.(4). So it is enough to prove
i — (uf +[ogui +Bi]) +uiyy = 0. Note that [oguiy +8i] < [uiy +6i] = ujy,
so the inequality follows.

Note that the parameter a; and [3; can be chosen differently for each ¢, or vary
randomly in the time evolution. The NS model introduced a random braking
which is known to be responsible for spontaneous jam formation, however it is
likely to find a spontaneous jam formation in this generalized model when we set
each a; and ; differently to get a but deterministic model. When o; = «, 8; =
for all ¢, we have an analogue to lemma 2.2 as the following:

Proposition 5.2. When a; = «,08; = B for all i, the following inequalities
hold:
. 1 .
(i) hi™h > min(hf,uf,,y, uf )
s 1 : -1 pt—1
(i) RETT > min(M, ki bt kL, h§+1’ h§+2)
41 .
(i) uf*! > min(ul vl )

Proor. (i) If vf,; = M, then hl™" > hl. Now we assume v, = [aul,, +
B] +ul, ;. Then

t41 t t t
h; hi +vipq —v;

hi + ([O‘UE-FQ + 6]+ u§+1) - ([auﬁ—l-l + 0] + ug)
hi + oy — uigy)] + uipy — uj (for [a] — [b] > [a — b))

AV
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> [a(uf+2 - U§+1) + uf+1} (for hﬁ > u’;)
= [ouf o+ (1 —a)uf,]
> min(“ﬁ-s-h Uzt'+2)

(ii) Just substitute Eq.(3) into (i).
(iti) wft = min(M, R BE) > min(M, uf q,ul,,, ht) >

ot t
min(ug, uf, 1, Ui o).

(ii)(iii) of proposition 5.2 can be understood as that there is no spontaneous
jam formation when a; and [3; are set to be the same for all 3.

The Gauss function here is introduced only for changing the real number

into integer, however it certainly makes some differences. It is not clear yet
whether this model agrees with the realistic traffic.
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