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Abstract

In this paper we investigate a cellular automaton model associated with traffic
flow and of which the mathematical solution is unknown before. We classify
all kinds of stationary states and show that every state finally evolves to a
stationary state. The obtained flow-density relation shows multiple branches
corresponding to the stationary states in congested phases, which are essentially
due to the slow-to-start effect introduced into this model. The stability of these
states is formulated by a series of lemmas, and an algorithm is given to calculate
the stationary state that the current state finally evolves to. This algorithm has
a computational requirement in proportion to the number of cars.
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1. Introduction

Cellular automata[1] (CA) provide a simple, flexible way for modelling and
are suitable for computer simulations. Many interesting phenomena can be
observed in such simulation and then leave challenges to mathematicians. In
order to study traffic flow, CA have been used extensively in recent years, and
many traffic CA models have been proposed so far.[2-7]

There are basically two types of traffic CA models: Euler form and Lagrange
form.[12] Models in Euler form, such as the Burger’s CA[8,10] which can be
derived from Burger’s equation using an ultradiscrete method[9], focus on the
number of cars at each site; while the Lagrange form models or the car-following
models, such as the Nagel-Schreckenberg (NS) model[3], focus rather on the
headway and velocity of each car. These two types of representations are joined
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with an Euler-Lagrange transformation,[11,12] which is a discrete version of the
well-known one in hydrodynamics.

Usually the flow-density relation, or the so-called “fundamental diagram” of
each traffic CA is calculated by computer simulations, and is compared with
the measurements of real traffic. We show an example of real data[15] at the
left of Fig.1, and point out that there is a wide scattering area near the critical
point where the transition from free phase to congested phase occurs. This area
suggests that there are multiple metastable states around the critical density.
The flow-density relation of the model we investigate is drawn at right, which
shows multiple branches really form the skeleton of such area.

Figure 1: Left: An observed flow-density relation at the Tomei expressway in Japan. Right:
The flow-density relation of the model for M = 5.

The model we investigate in this paper is in Lagrange form and written as:

xt+1
i = xti + min(M,xti+1 − xti − 1, xt−1

i+1 − x
t−1
i − 1) (1)

where M is a constant and xti denotes the position of the ith car at time t. As
this is a CA model, the space and time are both discrete so t ∈N, xti ∈Z. And we
consider a periodic boundary condition or traffic flow on a circuit, which means
that the position x is identical with the position x + L, and that the ith car
is identical with the (i + N)th car, where L and N represent the length of the
circuit and the number of cars respectively. The constant M can be understood
as a legal limitation of the velocity, the term xti+1 − xti − 1 avoids a collision,
and the term xt−1

i+1 − x
t−1
i − 1 represents the inertia of the car or the reaction

delay of the driver, which means that if xt−1
i+1 − x

t−1
i − 1 < xti+1 − xti − 1 ≤ M ,

then the car will maintain a low speed for an extra time step (slow-to-start
effect). This kind of rule first appears in a slow-start (SlS) model proposed
by Takayasu and Takayasu,[2] which is the first known deterministic two-value
CA to show metastable states, its generalizations given by Nishinari both in
Euler[13] and Lagrange[12] form show metastable states and multiple branches
in the fundamental diagram. These multiple branches are really characteristic,

2



which appear in the model combined with the slow-to-start effect,[14] but are
rarely observed in other models.[3,4,5] We will prove in section 2 that this effect
results in many kinds of congested phases, and these phases form the multiple
branches in the fundamental diagram.

Very often, a traffic CA also takes in a driver’s perspective or anticipation,
which means that the ith car’s behavior depends not only on the (i+ 1)th car,
but also the (i+2)th car and even the (i+3)th car. The slow-to-start effect and
the driver’s anticipation are somehow cancelling each other, for although the
driver cannot response to the fluctuation of his headway immediately, he can
possibly predict the fluctuation through the headway of the car before him. So,
as model (1) only takes in the slow-to-start effect, it is not amazing to find an
extreme behavior of cars, which makes a jam very easy to remain and very hard
to dissolve. This will be made clear in section 3 where we show some results
about a jam’s “stability”. The character of such results have been observed in a
model combined with the slow-to-start effect,[14] through computer simulations.
There is also an algorithm to predict the final stationary state which has a
computational requirement in proportion to N2 (where N is the number of
cars) given in section 3.

In section 4 we will make good use of the facts proved in section 3, and
develop some tools to investigate the detailed behavior of a jam’s remaining.
As a result, an algorithm with a computational requirement in proportion to N
is obtained.

We conclude this paper in section 5 with a generalization of model (1) to
include a driver’s perspective. Some elemental discussions about the generalized
model are given.

2. Stationary states and the flow-density relation

Notation2.1. By Ci we mean the ith car and Cti the ith car at time t. xt+1
i −xti

is called the velocity of Cti and denoted by vti . xti+1 − xti − 1 is called the
headway of Cti and denoted by hti. Eq.(1) is then rewritten as:

vti = min(M,hti, h
t−1
i ) (2)

with ht+1
i = hti +vti+1−vti by definition. Immediately we get hti ≥ vti , h

t−1
i ≥ vti .

There are two apparent types of stationary states which satisfy this equation,
namely the “free state” that vti = M,hti ≥ M for all i; and the “τ -uniform
state” that vti = hti = τ < M for all i. Note that if we have a uniform state at
time t, which means vti = hti for all i, then ht−1

i ≥ vti = hti for all i, however∑N
i=1 h

t
i = L−N is a constant, so we conclude that all the inequalities should

be equalities and the state at time t − 1 must also be a uniform state. This
shows that the uniform state is very unstable.

Lemma 2.2. The following inequalities hold:

(i) ht+1
i ≥ vti+1
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(ii) ht+1
i ≥ min(M,hti+1, h

t−1
i+1)

(iii) vt+1
i ≥ min(vti+1, v

t
i)

Proof. (i)

ht+1
i = hti + vti+1 − vti (by definition)

≥ vti+1 (for hti ≥ vti)

(ii) by (i) we have ht+1
i ≥ vti+1 = min(M,hti+1, h

t−1
i+1).

(iii)

vt+1
i = min(M,ht+1

i , hti)
≥ min(M, vti+1, h

t
i) (for ht+1

i ≥ vti+1 by (i))

≥ min(vti+1,min(M,hti, h
t−1
i ))

= min(vti+1, v
t
i) (by Eq.(2))

Corollary 2.3. min{vti |i ∈Z} ( the minimal velocity of cars at time t) is a
nondecreasing function of t.

Proof. Use (iii) of lemma 2.2.

Briefly speaking, this corollary shows that there is no spontaneous jam formation
in model(1).

Notation2.4. We use τt to denote this min{vti |i ∈Z}.

Obviously, the slow-to-start effect appears in an accelerating process and result
in a nontrivial low speed. The definition below focuses on this phenomenon and
clarifies the main object we investigate in this paper.

Definition2.5. If one of the following conditions is satisfied, we call Cti an
α-front for 0 ≤ α < M .

(i) vti = hti = α, vti+1 > α

(ii) vti = α, hti > α

Note that the two conditions are incompatible. We say the front is type A
when (i) is satisfied and type B when (ii) is satisfied.

Lemma 2.6. If Cti is an α-front, then Ct−1
i+1 or Ct−1

i is a β-front with β ≤ α.
More precisely, when Cti is a type A α-front, Ct−1

i+1 must be a type B γ-front with
γ ≤ α. In the case Cti is type B, we have Ct−1

i as a type A α-front or a type B
δ-front with δ < α.

Proof. (i) When Cti is type A:
Let γ = vt−1

i+1 , and we have α = hti ≥ vt−1
i+1 = γ, ht−1

i+1 ≥ vti+1 > α ≥ γ, so
Ct−1
i+1 is a type B γ-front.
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(ii) When Cti is type B:
We have vti = α < M,hti > vti so vti = α must be equal to ht−1

i since
vti = min(M,hti, h

t−1
i ). Then (a) vt−1

i = α or (b) vt−1
i < α. If vt−1

i = α,
then α < hti = ht−1

i − vt−1
i + vt−1

i+1 = vt−1
i+1 and we can say Ct−1

i is a type A
α-front. If δ = vt−1

i < α, the condition for Ct−1
i to be a type B δ-front is

then satisfied.

Definition2.7. Let Ft be the set consists of all fronts at time t. Lemma 2.6
suggests that we can define a front map φt : Ft → Ft−1 like this:

For Cti ∈ Ft, let φt(Cti ) =
{
Ct−1
i+1 if Cti is type A

Ct−1
i if Cti is type B

We also define Gt to be the set consists of all τt-fronts at time t.

An example is shown in Fig.2 with L = 40,N = 9,M = 4, from time point 0
to 10. We can see the concept “front” somehow corresponds to “the front of a
jam”, and the front map somehow joins the fronts of “the same jam”.

Figure 2: An example. The 9 cars are denoted by numbers from 1 to 9, or by alphabet A
(resp. B) when it is a type A (resp. type B) front.

Lemma 2.8. φt|Gt : Gt → Ft−1 ( the restriction of φt to Gt) is an injection.

Proof. If this is not true, we can assume that there exist Cti and Cti+1 in Gt
such that φt(Cti ) = φt(Cti+1). That means Cti is a type A τt-front and Cti+1 a
type B τt-front. Cti to be a type A τt-front implies vti+1 > τt while Cti+1 to be
a type B τt-front implies vti+1 = τt. That is a contradiction.

Note that if τt = τt−1, then by lemma 2.6 the image of φt|Gt lies in Gt−1. τt is a
nondecreasing function of t by Corollary 2.3, and it is an integer less than M , so
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it becomes a constant when t� 0. We write the constant τ∞. If τ∞ = M , the
traffic is free. If τ∞ < M , Gt with t� 0 is empty precisely when hti = vti = τ∞
for all i. This uniform state is trivial so we assume that Gt 6= ∅. Then lemma
2.8 implies that #Gt ( the cardinality of Gt) is non-increasing when t � 0.
That means we can assume #Gt to be a positive constant when t� 0.

Definition2.9. Let Cti be a τ -front. The preceding τ-front of Cti is the τ -
front Ctj with j > i such that no other τ -front exists between Cti and Ctj . We
say Cti connects properly to a τ -front Ctj if for all i < k < j, the following
conditions are satisfied:

1. If Cti is type B, then hti ≤M and Cti+1 is not a type B τ -front.
2. If vtk+1 = τ , then the following (a) or (b) holds:

(a) τ < ht+1
k = htk + τ − vtk ≤M and htk+1 = τ .

(b) htk = vtk ≥ τ .
3. If vtk+1 6= τ , then htk + τ − vtk = M .
4. If k > i+ 1 or Cti is type B, then vtk should be M unless the (2b) case.

Lemma 2.10. If a τ -front Cti connects properly to a τ -front Ctj , then vtk ≥ τ
for all i < k < j, and Ctj is the preceding front of Cti .

Proof. When k = i+1 and Cti is type A, then vtk > τ by definition. In the case
k > i+1 or Cti is type B, condition (4) and (2b) implies vtk ≥ τ . Now we assume
vtk = τ . Condition (4) says that this could happen only if vtk = htk = τ = vtk+1.
So Ctk is not a τ -front.

Roughly speaking, a proper connection structure looks like several successive
cars with headway τ and velocity τ preceding several successive cars with head-
way 2M−τ and velocity M . The next lemma shows that this structure somehow
repeats itself after two time steps.

Lemma 2.11. If a τ -front Cti connects properly to its preceding τ -front Ctj ,
then for all i ≤ k < j, we have xt+2

k = xtk+1 + τ − 1, vt+2
k = vtk+1. Moreover,

if Ct+1
p and Ct+1

q are τ -fronts satisfy φt+1(Ct+1
p ) = Cti , φt+1(Ct+1

q ) = Ctj , then
Ct+1
p connects properly to Ct+1

q .

Proof. First we use (iii) of lemma 2.2 to get vt+1
k ≥ min(vtk+1, v

t
k) ≥ τ . We

prove the first part of this lemma by dividing it into the following cases. In each
case we basically calculate ht+1

k by ht+1
k = htk − vtk + vtk+1 and vt+1

k by Eq.(2).
xt+2
k = xtk+1 + τ − 1 holds precisely when vtk + vt+1

k = htk + τ . Then we estimate
ht+2
k by ht+2

k = ht+1
k − vt+1

k + vt+1
k+1 ≥ h

t+1
k − vt+1

k + τ , and get vt+2
k by Eq.(2).

(i) k = i and Cti is type A:
Note the definition of a type A front and we have ht+1

i = vti+1, v
t+1
i = τ

and vti + vt+1
i = hti + τ can be checked. ht+2

i ≥ ht+1
i so vt+2

i = ht+1
i = vti+1.
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(ii) k = i and Cti is type B:
The definition of a type B front implies ht+1

i = hti+v
t
i+1−τ ≥ hti, condition

(1) says M ≥ hti, so vt+1
i = hti and vti + vt+1

i = hti + τ can be checked. If
i + 1 = j, then Ctj must be type A, so we have vti+1 = vt+1

i+1 = τ , then
ht+1
i = hti, h

t+2
i = vt+2

i = τ = vti+1. If i + 1 < j, by condition (4),
vti+1 = M or Cti+1 satisfies (2b). In the former case, ht+1

i ≥ M,ht+2
i ≥ M

so vt+2
i = M = vti+1. In the latter case, we have vt+1

i+1 = τ so ht+2
i = vti+1

and vt+2
i = ht+2

i = vti+1.
(iii) k ≥ i+ 1, vtk+1 = τ :

If condition (2a) is satisfied, we have ht+1
k ≤M and ht+1

k ≤ htk since vtk ≥ τ .
So vt+1

k = ht+1
k = htk + τ − vtk. From htk+1 = τ and vtk+2 ≥ τ we calculate

vt+1
k+1 = τ so ht+2

k = τ and vt+2
k = τ = vtk+1. If condition (2b) is satisfied,

we have ht+1
k = τ and vt+1

k = τ ; ht+2
k ≥ τ so vt+2

k = τ = vtk+1.
(iv) k ≥ i+ 1, vtk+1 6= τ :

Condition (4) says that vtk+1 = M or Ctk+1 satisfies (2b). In the former
case we have ht+1

k = 2M − τ by condition (3), then vt+1
k = M . ht+2

k ≥ M
so vt+2

k = M = vtk+1. In the latter case, ht+1
k = M − τ + vtk+1 ≥ M and

vt+1
k = M . Since Ctk+1 satisfies (2b), we have just showed in (iii) that
vt+1
k+1 = τ , which implies ht+2

k = vtk+1 and so vt+2
k = vtk+1.

To prove the second part of this lemma, we simply check the four conditions
for all p < k < q. (1) If Ct+1

p is type B, that means p = i and Cti is type A
by lemma 2.6. So ht+1

p = vti+1 ≤ M . If vt+1
i+1 = τ , then ht+1

i+1 must be τ since
hti+1 ≥ vti+1 > τ and τ = vt+1

i+1 = min(M,hti+1, h
t+1
i+1). That means Ct+1

p+1 cannot
be a type B τ -front. (2)(3)(4) As p < k < q implies i ≤ k < j, we summarize the
preceding calculation results here: If (ii) and i+1 = j, we have vt+1

k = ht+1
k and

vt+1
k+1 = τ ; If (ii) and i+ 1 < j, we have ht+1

k − vt+1
k + τ = vtk+1, with vtk+1 = M

or vt+1
k+1 = τ = ht+1

k+1. If (iii), we have vt+1
k = ht+1

k and vt+1
k+1 = τ . If (iv), we have

vt+1
k = M,ht+1

k − vt+1
k + τ = vtk+1, with vtk+1 = M or vt+1

k+1 = τ = ht+1
k+1. (Note

that Cti must be type B when k = i, and we can assume htk+1 = τ if vtk+1 = τ ,
for otherwise Ctk+1 is a type B τ -front so we have k+ 1 = j and k = q = j − 1).
In any case, (2)(3)(4) hold.

Definition2.12. A τ-congested state is a state that contains at least one
τ -front and all its τ -fronts connect properly to their preceding τ -fronts.

Corollary 2.13. If we have a τ -congested state at time t, then the state at time
t+ 1 is also a τ -congested state, and xt+2

i = xti+1 + τ − 1, vt+2
i = vti+1 for all i.

Proof. Take an arbitrary τ -front Cti . By lemma 2.11, what to prove is that
we can find a τ -front Ct+1

p satisfies φt+1(Ct+1
p ) = Cti . This can always be done

when Cti is type A since then Ct+1
i is automatically a type B τ -front. Now

assume Cti to be type B. Cti is properly connected, so we can apply condition
(2) to Cti−1 and get hti−1 = vti−1 ≥ τ , that means ht+1

i−1 = vt+1
i−1 = τ . On the

other hand, lemma 2.10 says vti+1 ≥ τ , so ht+1
i = hti − τ + vti+1 ≥ hti > τ , and

hence vt+1
i > τ . Now we can say that Ct+1

i−1 is a type A τ -front.
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Using the density ρ = N/L, we can represent the flow Q of a τ -congested state
by ρ as:
Q = 1

2L

∑N
i=1(xt+2

i −xti) = 1
2L

∑N
i=1(xti+1−xti+ τ −1) = N(τ−1)+L

2L = τ−1
2 ρ+ 1

2 .
Since the headway of a car in a τ -congested state is always between τ and
2M − τ , we have 1

2M−τ+1 < ρ < 1
τ+1 .

Theorem 2.14. Every state finally evolves to one of the followings:

(i) a free state.
(ii) a τ -uniform state.
(iii) a τ -congested state.

Proof. As we have discussed above, if not the (i) or (ii) case, we can assume
that τt = τ∞ = τ and #Gt is a positive constant at time t� 0. Now we prove
it to be the (iii) case. Since #Gt is a constant, if we have a type B τ -front at
time t there must be a corresponding type A τ -front at time t + 1 (and vice
versa). Then by lemma 2.11, once at time t a τ -front Cti connects properly to its
preceding τ -front, there will always be a τ -front corresponds to Cti which also
connects properly to its preceding τ -front after t. This verifies that we can only
consider a type A τ -front Cti and its correspondences at time t+ 2, t+ 4, etc. to
see if it connects properly to its preceding τ -front at last. We enumerate some
cases at the beginning in which the type A τ -front Cti connects to its preceding
just properly:

• hti+1 ≤M + vti+1 − τ, vti+2 = τ .
In this case, if hti+1 = vti+1, then the condition (2b) in definition 2.9 is
satisfied for k = i + 1; otherwise if hti+1 > vti+1, we have hti+2 = τ since
the type B τ -front Cti+2 will not have a correspondence at time t + 1 if
hti+2 > τ , so the condition (2a) in definition 2.9 is satisfied for k = i+ 1.

• hti+1 = M + vti+1 − τ, vti+2 = hti+2, v
t
i+3 = τ .

In this case condition (3) in definition 2.9 is held for k = i+ 1.

• hti+1 = M + vti+1 − τ, vti+2 = M,hti+2 ≤ 2M − τ, vti+3 = τ .
In this case if hti+2 > vti+2, then hti+3 must be τ , for otherwise the type B
τ -front Cti+3 will not have a correspondence at time t + 1. So condition
(2a) is satisfied for k = i+ 2.

• hti+1 = M + vti+1− τ ; j ≥ i+ 2, vtk = M,htk = 2M − τ for all i+ 2 ≤ k ≤ j;
vtj+1 = htj+1, v

t
j+2 = τ .

• hti+1 = M + vti+1− τ ; j ≥ i+ 2, vtk = M,htk = 2M − τ for all i+ 2 ≤ k ≤ j;
vtj+1 = M,htj+1 ≤ 2M − τ, vtj+2 = τ .

The last two are similar to the above. Now before considering Cti in the
following cases, let f denote vti+1, and confirm that Cti is correspondent to
Ct+2
i−1 , C

t+4
i−2 , C

t+6
i−3 , . . . with vt+2

i−1 = vt+4
i−2 = vt+6

i−3 = . . . = f .
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(i) hti+1 > M + f − τ :
We have ht+1

i+1 ≥ hti+1+τ−vti+1 > M , so vt+1
i+1 = M , and we calculate ht+2

i =
M + f − τ . That means the correspondence Ct+2

i−1 has ht+2
i = M + f − τ

and hence the (iii) case.
(ii) hti+1 < M + f − τ :

If vti+2 = τ , Cti connects to its preceding properly. If vti+2 > τ , we have
ht+1
i+1 > hti+1 + τ − f , and hti+1 > hti+1 + τ − f since vti+1 > τ , and M >

hti+1 + τ − f since hti+1 < M + f − τ . So vt+1
i+1 > hti+1 + τ − f and we

calculate ht+2
i > hti+1. That means the correspondences of hti+1 at time

t+2, t+4, t+6, . . . ( i.e. ht+2
i , ht+4

i−1, h
t+6
i−2, . . .) strictly increase until M+f−τ

or until the correspondent front connects to its preceding properly.
(iii) hti+1 = M + f − τ :

First check that hti+1 = M + f − τ implies ht+2
i = M + f − τ . And if

vt−1
i+2 6= M , we can consider the correspondent front Ct+2

i−1 with vt+1
i+1 = M .

So it does not matter to assume vt−1
i+2 = M . Then ht−1

i+2 ≥ v
t−1
i+2 = M , so we

have vti+2 = min(M,hti+2). Now consider the following subcases:
(a) hti+2 > 2M − τ :

We have ht+2
i+1 = 2M − τ, vt+2

i+1 = M .
(b) M ≤ hti+2 < 2M − τ :

If vti+3 = τ , Cti connects to its preceding properly. If vti+3 > τ , note
that vti+2 = M and do similar calculation as in (ii), we have ht+2

i+1 >
hti+2.

(c) hti+2 < M :
If vt+1

i+2 = τ , we have hti+2 = τ or ht+1
i+2 = τ . In the former case, Cti

connects to its preceding properly. In the latter case, vti+3 must be τ
since vti+2 = hti+2 implies ht+1

i+2 = vti+3. Then again Cti connects to its
preceding properly. If vt+1

i+2 > τ , we calculate ht+2
i+1 = vti+2− τ + vt+1

i+2 >
vti+2 = hti+2.

Anyway, we will finally find a correspondence Ct+2n
i−n such that ht+2n

i+2−n =
2M − τ , vt+2n

i+2−n = M if Ct+2m
i−m did not connect to its preceding properly

for all 0 ≤ m ≤ n. Next we consider the general case:
vtk = M , htk = 2M − τ for all i+ 2 ≤ k ≤ j with a j ≥ i+ 2.
First check that this condition will be inherited by Ct+2

i−1 as vt+2
k−1 = M ,

ht+2
k−1 = 2M − τ for all i + 2 ≤ k ≤ j. Similarly we can assume vt−1

j+1 = M

and have vtj+1 = min(M,htj+1). Consider the following cases and calculate
just as above:
(a) htj+1 > 2M − τ :

We have ht+2
j = 2M − τ , vt+2

j = M .
(b) M ≤ htj+1 < 2M − τ :

If vtj+2 = τ , Cti connects properly. If vtj+2 > τ , we have ht+2
j > htj+1.

(c) htj+1 < M :
If vt+1

j+1 = τ , Cti connects properly. If vt+1
j+1 > τ , we have ht+2

j > htj+1.
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So if Cti has not connected properly to its preceding yet, we can then
consider a correspondence Ct+2n

i−n such that vt+2n
k−n = M , ht+2n

k−1 = 2M − τ
for all i+ 2 ≤ k ≤ j + 1.

Since the number of cars is limited, we conclude that Cti will finally connects
properly to its preceding τ -front.

Using theorem 2.14, we can now calculate the flow-density relation at time t� 0.
Obviously, a free state has a Q = Mρ for ρ ≤ 1

M+1 and a τ -uniform state has
a Q = τρ for ρ = 1

τ+1 . And we have calculated the flow-density relation of a
τ -congested state as Q = τ−1

2 ρ + 1
2 for 1

2M−τ+1 < ρ < 1
τ+1 . This is the result

we have shown in Fig.1.

3. Stabilities and an O(N2) algorithm

The next two lemmas show a remarkable character of model (1).

Lemma 3.1. Assume vt−1
i ≥ α. Then hti ≤ 2M − α implies ht+1

i ≤ 2M − α.

Proof. Consider the three different cases of vti . (i) vti = hti. Then ht+1
i = hti +

vti+1−vti = vti+1 ≤M . (ii) vti = M . Then ht+1
i = hti+vti+1−M ≤ hti ≤ 2M −α.

(iii) vti = ht−1
i . We have hti = ht−1

i + vt−1
i+1 − v

t−1
i ≤ ht−1

i +M −α = vti +M −α
by assumption. So ht+1

i ≤ hti +M − vti ≤ 2M − α.

Lemma 3.2. Suppose we have a type A α-front Cti and assume that vt−1
i−1 ≥

α, vt+1
i+1 ≥ α. Then the necessary and sufficient condition for Ct+2

i−1 to be a type
A α-front is α ≤ hti−1 ≤ 2M − α.

Proof. Necessity: If α > hti−1, we have vt+1
i−1 < α so ht+2

i−1 > ht+1
i−1 which means

ht+2
i−1 > vt+2

i−1 and hence Ct+2
i−1 is not a type A front. If 2M − α < hti−1, we have

ht+2
i−1 > α since vti−1 ≤M,vt+1

i−1 ≤M . So Ct+2
i−1 is not a type A α-front.

Sufficiency: First note that vt+1
i+1 ≥ α implies ht+2

i ≥ ht+1
i and since ht+1

i =
vti+1 > α we get vt+2

i > α. Next we consider the following two situations and
show in each case ht+2

i−1 = vt+2
i−1 = α.

(i) α ≤ hti−1 ≤M .
This case, we have vti−1 ≥ α since both ht−1

i−1 ≥ vt−1
i−1 ≥ α and hti−1 ≥ α.

So we calculate ht+1
i−1 ≤ hti−1 ≤ M which implies vt+1

i−1 = ht+1
i−1 and ht+2

i−1 =
vt+2
i−1 = α.

(ii) M ≤ hti−1 ≤ 2M − α.
If vti−1 = M we have ht+1

i−1 ≤ M . Or if vti−1 = ht−1
i−1, then hti−1 = ht−1

i−1 +
vt−1
i −vt−1

i−1 ≤ h
t−1
i−1+M−α = vti−1+M−α, so again ht+1

i−1 = hti−1+α−vti−1 ≤
M . Since hti−1 ≥M , we have vt+1

i−1 = ht+1
i−1 and ht+2

i−1 = vt+2
i−1 = α.

Combining lemma 3.1 with lemma 3.2 we get the next lemma.
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Lemma 3.3. Suppose Ct+ki to be a type A α-front with k ≥ 1. Assume that
vt+k+1
i+1 ≥ α and vt+si−1 ≥ α for all 0 ≤ s ≤ k. If there exists 1 ≤ r ≤ k such that
ht+ri−1 ≤ 2M − α, then Ct+k+2

i−1 is a type A α-front.

The proof is obvious.

Lemma 3.4. Suppose Ct+ki to be a type A α-front with k ≥ 0. Assume that
vt+k+1
i+1 ≥ α and vt+si−1 ≥ α for all 0 ≤ s ≤ k. Then the necessary and sufficient

condition for Ct+k+2
i−1 to be a type A α-front is that xt+ki − xti−1 − 1 ≤ vti−1 +

(k + 1)M − α.

Proof. Necessity: It is easy to check that if Ct+k+2
i−1 is a type A α-front then

xt+k+2
i−1 must be xt+ki +α−1. On the other hand we have xt+k+2

i−1 = xti−1 +vti−1 +∑k+1
j=1 v

t+j
i−1 ≤ xti−1 + vti−1 + (k+ 1)M so xt+ki − xti−1− 1 ≤ vti−1 + (k+ 1)M −α.

Sufficiency: In the case k = 0, the assumption is vt+1
i+1 ≥ α, hti−1 ≤ vti−1 +

M − α, vti−1 ≥ α. First note that vt+1
i+1 ≥ α implies vt+k+2

i > α. If hti−1 ≤ M ,
we have ht+1

i−1 ≤ hti−1 since vti−1 ≥ α = vti , then vt+1
i−1 = ht+1

i−1. If hti−1 ≥ M , we
have ht+1

i−1 ≤ M since hti−1 ≤ vti−1 + M − α, then again vt+1
i−1 = ht+1

i−1. Anyway,
vt+1
i−1 = ht+1

i−1 implies ht+2
i−1 = vt+2

i−1 = α.
In the case k ≥ 1, assume Ct+k+2

i−1 is not a type A α-front. Then by lemma 3.3
we have ht+ri−1 > 2M−α for all 1 ≤ r ≤ k. In particular, we have hti−1−α+M ≥
hti−1−vti−1+vti = ht+1

i−1 > 2M−α so hti−1 > M , then vt+ri−1 = M for all 1 ≤ r ≤ k.
That means xt+ki − 1 = xt+ki−1 + ht+ki−1 > (xti−1 + vti−1 + (k − 1)M) + (2M − α)
which leads to a contradiction.

Remark3.5. In fact lemma 3.4 is true even when k = −1. For this case, the
expression xt+ki − xti−1 − 1 ≤ vti−1 + (k+ 1)M − α becomes hti−1 ≤ vti−1, on the
other hand we have hti−1 ≥ vti−1 and hti−1 ≥ vt−1

i = vti = α, so it is equivalent
to hti−1 = vti−1 ≥ α, which is the necessary and sufficient condition for Ct+1

i−1 to
be a type A α-front.

Furthermore, if Ct+k+2
i−1 is not a type A α-front, the proof of lemma 3.4

actually shows that vt+ri−1 = M for all 1 ≤ r ≤ k + 1. So this case we have
xt+k+2
i−1 = xti−1 + vti−1 + (k+ 1)M for k ≥ −1, and vt+k+2

i−1 = min(M,ht+k+2
i−1 ) for

k ≥ 0.

Definition3.6. We say a type A α-front Cti remains to Ci−k if for all 0 ≤ j ≤
k, Ct+2j

i−j is a type A α-front.

If we somehow know the information about a type A α-front Ct+ki at a future
time t + k, then lemma 3.4 provides a way for us to predict whether the front
remains or not through the information at the current time t. If the front
remains to Ci−1, we get the information about Ct+k+2

i−1 ; Even not, we also have
ht+k+2
i−1 and vt+k+2

i−1 by remark 3.5. This will be actively used in section 4 to
investigate the detailed behavior of a front. Here we only pick up an outstanding
specialization.
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Corollary 3.7. Suppose Cti to be a type A τt-front. Then Cti remains to Ci−k
precisely when xti − xti−j ≤ j(2M − τt + 1) + vti−j −M for all 0 ≤ j ≤ k.

Proof. Since we are thinking about a τt-front, lemma 3.4 can be freely used
without care about the estimate of velocities. Note that if Cti remains to Ci−j ,
then we have xt+2j

i−j = xti + j(τt − 1), and Cti remains to Ci−j−1 precisely when
xt+2j
i−j −xti−j−1−1 ≤ vti−1 +(2j+1)M−τt by lemma 3.4. That is the expression
xti+j(τt−1)−xti−j−1−1 ≤ vti−1 +(2j+1)M−τt or xti−xti−j−1 ≤ (j+1)(2M−
τt + 1) + vti−j−1 −M .

Roughly speaking, this corollary means that we cannot untie an l-car-long τ -jam
unless there is an l(2M − τ + 1) gap. In particular, the smaller τ is, the more
difficult we untie the jam. Also, even one car with headway τ can propagate
a jam in not so strict conditions. This can somehow be broken if we introduce
a driver’s perspective, but random generated, rather uniformly distributed cars
will almost always cluster behind the car with the narrowest headway.[14]

Theorem 3.8. If τt+2N = τt, then τ∞ = τt.

Proof. If it is a free state or a uniform state at time t + 2N , the statement
is certainly true. So we assume Gt+2N 6= ∅. Let τ = τt, take a τ -front Ct+2N

k .
If Ct+2N

k is type B, since τt+2N = τt+2N−1, φt+2N (Ct+2N
k ) is a type A τ -front

by lemma 2.6. So it does not matter for us to change the assumption to:
τt+2N−2 = τt and there is a type A τ -front in Gt+2N−2. Under this assumption,
take a type A τ -front Ct+2N−2

k , let Cti = φt+1◦. . .◦φt+2N−3◦φt+2N−2(Ct+2N−2
k ).

By lemma 2.6, Cti must be a type A τ -front, and Cti remains to Ck = Ci−N+1.
Then by corollary 3.7, we have xti − xti−j ≤ j(2M − τ + 1) + vti−j −M for all
0 ≤ j ≤ N − 1. In particular, xti − xti−N+1 ≤ (N − 1)(2M − τ + 1). By the
periodic boundary condition, Cti−N is a type A τ -front identical with Cti , so we
have xti−N+1 = xti−N + τ = xti − L+ τ . This implies L ≤ N(2M − τ + 1). Now
take an arbitrary integer pN + q ≥ 0 with 0 ≤ q ≤ N − 1, use the periodic
boundary condition we get xti−pN − xti−pN−q ≤ q(2M − τ + 1) + vti−pN−q −M
so xti − xti−pN−q ≤ pL + q(2M − τ + 1) + vti−pN−q −M ≤ (pN + q)(2M − τ +
1) + vti−pN−q −M hence by corollary 3.7 Cti remains eternally.

Theorem 3.8 provides a way to calculate τ∞ within limited steps: τt will not
change further if it did not increase within 2N steps, and τt ≤ M . So we
simply calculate 2MN time steps then τ2MN must be τ∞. Every time step
has a computational requirement in proportion to N , so this algorithm has a
computational requirement in proportion to N2. However, this method is far
from elegant and depends on the periodic boundary condition. In next section
we will develop a smarter and more precise way to predict the behavior of fronts.

4. Minimal fronts and strictly minimal fronts

Definition4.1. An α-front Cti being minimal means that hsi ≥ α for any s > t.
If the inequality holds strictly, we say the front is strictly minimal.
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Evidently, a τt-front is always minimal.

Lemma 4.2. If an α-front Cti is minimal (resp. strictly minimal), then φt(Cti )
is minimal (resp. strictly minimal). Or more generally, let Ct−1

j = φt(Cti ),
then hsj ≥ α for any s ≥ t if Cti is minimal; the inequality strictly holds if Cti is
strictly minimal.

Proof. If Cti is type B, this is obvious because φt(Cti ) = Ct−1
i . Now assume

Cti to be type A, so φt(Cti ) = Ct−1
i+1 . We prove that if there exists an s ≥ t such

that hsi+1 = δ ≤ α, then hs+2
i ≤ δ (this implies δ = α when Cti is minimal, and

leads to a contradiction when Cti is strictly minimal):
Since Cti is minimal, we have hri ≥ α for all r ≥ t, so vri ≥ α for all r ≥ t.
And Cti is a type A front so ht+1

i = vti+1 ≤M ≤ 2M − α. Then by lemma 3.1,
we have hri ≤ 2M − α for all r ≥ t. In particular, hsi ≤ 2M − α. Now do the
following case division which is similar to the one in lemma 3.2:

(i) If α ≤ hsi ≤M :
Since vsi ≥ α we have hs+1

i ≤ hsi+hsi+1−α = hsi+δ−α ≤ hsi , so vs+1
i = hs+1

i ,
then hs+2

i = vs+1
i+1 ≤ hsi+1 = δ.

(ii) If M ≤ hsi ≤ 2M − α:
If vsi = M we have hs+1

i ≤ M . Or if vsi = hs−1
i , then hsi = hs−1

i + vs−1
i+1 −

vs−1
i ≤ hs−1

i + M − α = vsi + M − α, so again hs+1
i = hsi + α − vsi ≤ M .

Since hsi ≥M , we have vs+1
i = hs+1

i and hence hs+2
i = vs+1

i+1 ≤ hsi+1 = δ.

Corollary 4.3. τt = τ∞ if and only if there is no strictly minimal τt-front at
time t.

Proof. Necessity (Need the periodic boundary condition): If there is a strictly
minimal τt-front Cti , we have hsi > τt for all s ≥ t+ 1. Using (ii) of lemma 2.2,
we get hsi−1 > τt for all s ≥ t + 3. Do this repeatedly and note the periodic
boundary condition, finally we get hsi > τt for all s ≥ t+ 2N − 1 and all i. That
means τ∞ > τt.

Sufficiency: If τ∞ > τt, there exists an s ≥ t such that τs+1 > τs. Then all
τs-fronts in Gs are strictly minimal. Take a Csi ∈ Gs, the front φt+1 ◦ . . .◦φs−1 ◦
φs(Csi ) ∈ Ft is strictly minimal by lemma 4.2.

Notation4.4. Let St be the set consists of all minimal fronts at time t. Use
Φt−kt to denote the map φt−k+1 ◦ . . .◦φt−1 ◦φt|St : St → St−k. Φtt is understood
as the identity map of St.

Lemma 4.5. Suppose Cti to be a type A minimal α-front. Then we have:

1. vsi+1 ≥ α for any s ≥ t. If Cti is strictly minimal, the inequality holds
strictly.

2. If Cti remains to Ci−1, then Ct+2
i−1 is minimal. If Cti is strictly minimal,

Ct+2
i−1 is also strictly minimal.

3. vt+2
i = ht+1

i = vti+1.
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Proof. (1) Since Cti is type A, by lemma 3.4 we have hsi+1 ≥ α for any s ≥ t.
So vsi+1 ≥ α holds for any s ≥ t. (2) Since hsi ≥ α for any s ≥ t+ 1, using (ii) of
lemma 2.2 we get hsi−1 ≥ α for any s ≥ t+ 3. (3) Note that vt+1

i+1 ≥ α and this
can be checked by simple calculation.

Using lemma 4.5, we find that the condition vt+k+1
i+1 ≥ α in lemma 3.4 is always

satisfied if we assume Ct+ki to be minimal. Then using (iii) of lemma 2.2 to
estimate the velocities, we get the following generalization of corollary 3.7.

Corollary 4.6. Suppose Cti to be a type A minimal α-front and assume vti−j ≥
α for all 0 ≤ j ≤ k. Then Cti remains to Ci−k precisely when xti − xti−j ≤
j(2M − τt + 1) + vti−j −M for all 0 ≤ j ≤ k.

Proof. Since Cti is minimal, we have vsi ≥ α for all s ≥ t. The assumption is
vti−j ≥ α for all 0 ≤ j ≤ k. Using (iii) of lemma 2.2 repeatedly we conclude
vsi−j ≥ α for all 0 ≤ j ≤ k and all s ≥ t. So the premise of lemma 3.4 is satisfied.

Now what happens if a front does not remain? Suppose Ct+ki (k ≥ 0) to be a type
A minimal α-front which does not remain to Ci−1. If we have vsi−1 ≥ α for all
t ≤ s ≤ t+k, using remark 3.5 we can get ht+k+2

i−1 and vt+k+2
i−1 = min(M,ht+k+2

i−1 ).
If β = ht+k+2

i−1 < vt+k+2
i , we find that Ct+k+2

i−1 is a type A β-front. If not the
case, generally we cannot say more without some extra information about the
cars before Ct+ki+1 . However, we will show that as for strictly minimal fronts, a
prediction indeed can be done since the situation becomes simple enough after
a specific time point.

Lemma 4.7. Suppose Cti to be a type A minimal α-front. Then vt+1
i+1 ≤ vt+3

i .
If Cti is strictly minimal, the inequality strictly holds unless vt+1

i+1 = vt+3
i = M .

Proof. By lemma 4.5, we have vt+2
i = ht+1

i = vti+1 > α and vt+2
i+1 ≥ α, so

ht+2
i = ht+1

i −α+ vt+1
i+1 > vt+1

i+1 , and ht+3
i = (ht+1

i − vt+2
i ) + (vt+2

i+1 −α) + vt+1
i+1 ≥

vt+1
i+1 . Hence vt+1

i+1 ≤ v
t+3
i .

Lemma 4.8. At time t ≥ 2M2, a strictly minimal front Cti must be in one of
the following two cases.

1. A type A front with vti+1 < M, vt+1
i+1 = M ;

Or a type B front with hti < M, vti+1 = M,vt+2
i = M .

2. A type A front with vti+1 = M ;
Or a type B front with vt+1

i = M .

Proof. First we prove that if Csj = φs+1(Cs+1
k ) and Cs+1

k is a strictly minimal
front, then Csj in case (1) or (2) implies Cs+1

k in case (1) or (2).

• Csj is a type A α-front in case (1):
Since Csj is type A, Cs+1

k = Cs+1
j is type B and hs+1

k = vsj+1 < M, vs+1
k+1 =

vs+1
j+1 = M immediately follows. We have hs+2

k ≥ vs+1
k+1 = M , and apply
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lemma 4.5 to the type A minimal α-front Csj we get vs+2
k+1 ≥ α, so hs+3

k =
hs+1
k −α− vs+2

k +M + vs+2
k+1 = M + vs+2

k+1−α ≥M , that means vs+3
k = M .

Hence Cs+1
k is in case (1).

• Csj is type B in case (1):
If j = k and Cs+1

k is type B, then vs+2
k = vs+2

j = M , so Cs+1
k is in case

(2). If k = j − 1 and Cs+1
k is type A, we have vs+1

k+1 = vs+1
j = hsj < M ,

and vs+2
k+1 = vs+2

j = M , so Cs+1
k is in case (1).

• Csj is type A in case (2):
Then Cs+1

k = Cs+1
j is type B and we have vs+2

k = vs+2
j = vsj+1 = M by

lemma 4.5. So Cs+1
k is in case (2).

• Csj is type B in case (2):
vs+1
j = M so Cs+1

j cannot be a front. Hence k = j − 1 and Cs+1
k is type

A, with vs+1
k+1 = vs+1

j = M . So Cs+1
k is in case (2).

Let Kr = Φt−2M2+r
t (Cti ). Consider the sequence K1,K2, . . . ,K2M2 . If we can

find a Kr in case (1) or (2), then Cti must be in case (1) or (2). Insert a dividing
line between Kp and Kp+1 if they are both type B. The total number of dividing
lines is less than (M −1), because if we have Kq as an α-front and Kq+1 as a β-
front, then basically β ≥ α, and the inequality is strict if Kq and Kq+1 are both
type B, which means this both type B case cannot happen more than (M − 1)
times. Now these less than (M − 1) dividing lines divide the sequence into less
than M parts, and since the sequence is 2M2 long, we can find a part whose
length exceeds 2M . Every type A front in this part is followed by a type B front
and vice versa, so we finally found a 2M long sequence Ka,Ka+1, . . . ,Ka+2M−1

with an A,B,A,B,. . . type pattern. Then apply lemma 4.7 to Ka = Cyx ,Ka+2 =
Cy+2
x−1 ,Ka+4 = Cy+4

x−2 , . . . we found that vy+1
x+1, v

y+3
x , vy+5

x−1, . . . increases to M at
last. Then the type A front Ka+2M−2 = Cy+2M−2

x−M+1 with vy+2M−1
x−M+2 = M is in

case (1) if vy+2M−2
x−M+2 < M , or in case (2) if vy+2M−2

x−M+2 = M .

Remark4.9. Now suppose t ≥ 2M2, and Cti is a type A strictly minimal α-front
which does not remain to Ci−1. Assume we know ht+2

i−1 and vt+2
i−1 = min(M,ht+2

i−1).
Then lemma 4.8 suggests all cases would happen:

(i) Cti is in case (1). Let f = hti.
(a) If β = ht+2

i−1 < f , then Ct+2
i−1 is a type A β-front, vt+2

i = f, vt+3
i = M .

(b) If f ≤ ht+2
i−1 ≤ M , then xt+3

i−1 = xt+2
i − 1, Ct+3

i−1 is a type A f -front,
vt+3
i = M .

(c) If M < ht+2
i−1 < 2M − f , then xt+3

i−1 = xt+2
i−1 + M , Ct+3

i−1 is a type A
γ-front where γ = ht+2

i−1 −M + f , vt+3
i = M .

(d) If ht+2
i−1 ≥ 2M − f , then vt+2

i−1 = vt+3
i−1 = vt+3

i = M .
(ii) Cti is in case (2).

(a) If β = ht+2
i−1 < M , then Ct+2

i−1 is a type A β-front, vt+2
i = M .
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(b) If ht+2
i−1 ≥M , then vt+2

i−1 = vt+2
i = M .

Readers are perhaps worried about how do we know a front remains or not when
the estimates of velocities do not hold? In fact this case is avoided well in our
algorithm. The mechanism is based on the following lemma, which suggests
that if we check from 0-fronts to (M−1)-fronts in turn, things will go smoothly.

Lemma 4.10. Suppose Ct+ki (k ≥ 0) to be a type A minimal α-front. If Cti−1 is
NOT a β-front with β < α, and Csi−1 is NOT a type A strictly minimal γ-front
for any s ≥ t+ 1 and any γ < α, then vsi−1 ≥ α for all s ≥ t.

Proof. Let δ = min{hsi−1|s ≥ t}. Since Ct+ki is minimal we have hsi−1 ≥ α for
all s ≥ t + k + 2 by (ii) of lemma 2.2, so if δ < α, the minimum δ is gained
at a time before t + k + 2. Let r = max{s ≥ t|hsi−1 = δ} and we find Cri−1

to be a type A strictly minimal δ-front if r ≥ t + 1. As this contradicts our
assumption, r must be t. This case, since Cti−1 is not a β-front with β < α,
we have vti ≤ vti−1 = hti−1 = δ, but this implies ht+1

i−1 ≤ δ and contradicts the
definition of r. So we conclude that hsi−1 ≥ α for all s ≥ t and hence vsi−1 ≥ α
for all s ≥ t + 1. Furthermore, vti−1 ≥ α holds because if ε = vti−1 < α then
Cti−1 is a type B ε-front, contradiction again.

Remark4.11. It is valuable to point out a special case.
First we make an understanding that for a type B α-front Cyx and a z ≥ 1,

we say Cyx remains to Cx−z in the meaning that Cy+1
x−1 is a type A α-front which

remains to Cx−z.
Now let t ≥ 2M2, let Ct+ki (k ≥ 0) be a type A minimal α-front and Cti−1

a type B strictly minimal β-front with β < α. Suppose Cti−1 remains to Ci−p,
Csi−1 is not a type A strictly minimal γ-front for any s ≥ t+ 1 and any γ < α.
We want to know whether Ct+ki remains to Ci−q for any 1 ≤ q ≤ p?

First we consider Ci−1. Lemma 4.8 says there are two cases:

• Cti−1 satisfies (1) of lemma 4.8.
We have vt+2

i−1 = M . So Ct+2
i−1 is not a front. Using lemma 4.10 we get

vsi−1 ≥ α for all s ≥ t+ 2. Note that k cannot be 0 because vti = M . For
k ≥ 1, using lemma 3.4 we conclude that Ct+ki remains to Ci−1 precisely
when xt+ki − xt+2

i−1 − 1 ≤ kM − α.

• Cti−1 satisfies (2) of lemma 4.8.
We have vt+1

i−1 = M , so Ct+1
i−1 is not a front, then vsi−1 ≥ α for all s ≥ t+ 1.

Using lemma 3.4 we get the condition xt+ki − xt+1
i−1 − 1 ≤ (k + 1)M − α.

These two expressions can be unified to xt+ki − xt+1
i−1 − 1 ≤ vt+1

i−1 + kM − α.
Now we consider Ci−q. Note that the condition vsi−1 ≥ α for all s ≥ t+2 (or

s ≥ t+ 1) is equivalent to hsi−1 ≥ α for all s ≥ t+ 1 (or s ≥ t), so we use (ii) of
lemma 2.2 to conclude that the velocity estimates for Ci−q automatically hold.
If Cti−1 satisfies (1) of lemma 4.8, we have vt+2q−1

i−q = vt+1
i−1 by lemma 4.5, and

vt+2q
i−q = M by lemma 4.7; if Cti−1 satisfies (2) of lemma 4.8, we have vt+2q−1

i−q = M

16



by lemma 4.5. Anyway, the calculation is the same to the Ci−1 case. Note that
xt+2q−1
i−q = xt+1

i−1 + (q − 1)(β − 1), and xt+k+2q−2
i−q+1 = xt+ki + (q − 1)(α − 1) if

Ct+ki remains to Ci−q+1, we get the condition for Ct+ki to remain to Ci−q as:
xt+ki − xt+1

i−1 − 1 ≤ vt+1
i−1 + kM − α− (q − 1)(α− β).

This expression shows that it is automatically determined by the index q
whether Ct+ki remains to Ci−q. Its analogue to the β = α case suggests the
following.

Lemma 4.12. Suppose Ct+ki to be a type A minimal α-front and Cti−1 a type B
minimal α-front. If Cti−1 remains to Ci−p, then Ct+ki remains to Ci−p precisely
when Ct+ki remains to Ci−1.

Proof. This can be easily showed by lemma 3.3. Note that the estimate of
velocities automatically holds, and if Cti−1 remains to Ci−2, then ht+1

i−2 = α ≤
2M − α.

The next lemma is a crucial application of lemma 4.8 which essentially makes
the algorithm work.

Lemma 4.13. Let t ≥ 2M2. If Ct+ki , Ct+kj ∈ St+k and i < j, then we
have Φtt+k(Ct+ki ) 6= Φtt+k(Ct+kj ) unless the case j = i + 1 and φt+k(Ct+ki ) =
φt+k(Ct+ki+1 ). More precisely, if a type A front Csp and a type B front Csp+1 at
time s ≥ 2M2 are both minimal, then there does NOT exist a front Cs+1

q such
that φs+1(Cs+1

q ) = Csp+1.

Proof. Let Csp be an α-front and Csp+1 a β-front. Then we have β > α by
definition. Since Csp+1 is minimal, hrp+1 ≥ β > α for all r ≥ s. Using (ii) of
lemma 2.2 we get hrp > α for all r ≥ s + 2. hs+1

p > α also holds because Csp is
type A. Hence Csp is a strictly minimal front which must be in case (1) or (2) of
lemma 4.8. vs+1

p+1 < M because Csp+1 is a front, so it is case (1). Then we find
Cs+1
p to be a type B front with vs+1

p+1 = M . That means there is no front can be
mapped to Csp+1.

According to this lemma, if we restrict Φtt+k to Gt+k or to the set consists of all
type A minimal fronts at time t+ k, then we get a one-to-one map. Moreover,
the reverse of this map can be searched like this:
For minimal front Cti , if Cti is type A, then we next go to Ct+1

i ; if Cti is type B,
then we go to Ct+1

i−1 when Ct+1
i−1 is a type A front, or to Ct+1

i when not.

Notation4.14. Notation for us to describe the algorithm.

• If Csj = Φst (C
t
i ), we say Cti is mapped to Csj , or Csj is an image of Cti .

• For a minimal front Cti , we say P (Cti ) is the domain of Cti and define it
as P (Cti ) = {Cs−kj |Csj = Φst (C

t
i ), 0 ≤ k ≤ s}. Give a partial order “≺”

between two minimal fronts as Cti ≺ Csj ⇔ P (Cti ) ⊆ P (Csj ). Note that
Cti ≺ Csj is equivalent to Cti ∈ P (Csj ).
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• If a type A minimal front Cti remains to Ci−k but does not remain to
Ci−k−1, we define d(Cti ) to be Ct+2k+1

i−k . Similarly, if a type B minimal
front Cti remains (remark 4.11) to Ci−k but does not remain to Ci−k−1,
we define d(Cti ) to be Ct+2k

i−k . Anyway, d(Cti ) is a type B minimal front and
called the destination of Cti . If Cti remains eternally, we say d(Cti ) =∞.

• For a type B strictly minimal front Cti which does not remain to Ci−1, let
e(Cti ) = Ct+1

i−1 if Ct+1
i−1 is a type A front, and e(Cti ) = Ct+2

i−1 if Ct+1
i−1 is not

a type A front but Ct+2
i−1 is. In other case, e(Cti ) is nothing. (cf. remark

4.9)

• Let X be the set of all cars at all time points and F the set of all fronts.
i.e. X = {Cti |i ∈ Z, t ≥ 0}, F =

⋃∞
t=0 Ft. For X ′ ⊆ X,F ′ ⊆ F , we say F ′

is complete to X ′ if for any type A minimal front Cti ∈ X ′, there exists
a (minimal) front Csj ∈ F ′ such that Csj = Φst (C

t
i ).

Now we are ready to see the algorithm. We first show the main program and
prove its correctness, then show the details of the subroutine.

Algorithm4.15. First of all, calculate 2M2 time steps and reset the time to 0.

• let Y0 = F0

• if F0 = ∅ then it is a free or uniform state, end the program.

• for τ = 0 to M − 1

– let Λτ = {τ -fronts in Yτ}.
– subroutine:

calculate Dτ = {d(Cti )|Cti ∈ Λτ}. If ∞ ∈ Dτ , output τ∞ = τ and
R = {Cti ∈ Λτ |d(Cti ) = ∞}, end the program. If ∞ /∈ Dτ , find the
maximal elements of Dτ in the partial order “≺”, put these elements
into Zτ , and calculate Y ′τ = Yτ \

⋃
Ct
i
∈Zτ P (Cti ), Eτ = {e(Cti )|Cti ∈

Zτ}.
– let Yτ+1 = Y ′τ ∪ Eτ .

• conclude τ∞ = M , end the program.

Proof of correctness. Let X0 = X and Xτ+1 = Xτ \
⋃
Ct
i
∈Zτ P (Cti ) if

∞ /∈ Dτ . Obviously the elements of Λ0 are minimal, Y0 is complete to X0, and
there is no α-front in Y0 with α < 0. By induction, we can assume that the
elements of Λτ are minimal, Yτ is complete to Xτ , and there is no α-front in
Yτ such that α < τ . If ∞ ∈ Dτ , of course τ∞ = τ , and by the completeness
of Yτ , we can calculate all τ∞-fronts at time t � 0 from R. Those τ∞-fronts
finally connect properly to their preceding fronts by theorem 2.14, so the final
stationary state is then entirely understood. Now we consider the ∞ /∈ Dτ

case.
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(i) There is no type A minimal β-front with β < τ exists in Xτ :
If we have a type A minimal β-front in Xτ , it is mapped to an α-front with
α ≤ β in Yτ since Yτ is complete to Xτ . However, there is no α-front in Yτ
such that α < τ .

(ii) τ∞ > τ :
Since ∞ /∈ Dτ , we can select a time point s > max{t|Cti ∈ Zτ}, then there
is no type A minimal β-front with β < τ exists after time s by (i). We
will show β cannot be τ either. That is because if such a β-front exists,
it is mapped to a Crj in Λτ , and so Crj remains to a time after s. That
contradicts the definition of s.

(iii) Elements of Zτ are strictly minimal:
Take a Cti ∈ Zτ and assume δ = min{hsi |s > t} ≤ τ . The elements of Λτ are
minimal so by lemma 4.5 Cti is also minimal. Then δ = τ . Since τ∞ > τ ,
we can take r = max{s > t|hsi = δ} and find Cri to be a type A minimal
τ -front. This contradicts the definition of Zτ , for we have Cti ≺ Cri , and
Cri is mapped to a front Cuj in Λτ , then d(Cuj ) � Cri � Cti .

(iv) For any Cti ∈ Zτ , let s be such that Csi−1 ∈ Xτ and Cs−1
i−1 /∈ Xτ , then

vri−1 = M for all s+ 1 ≤ r ≤ t (i.e. the “left border” of P (Cti ) is coated by
a “velocity M wall”):
If t = 0, there is nothing to prove. If t > 0, then Ct−1

i is a type A minimal
τ -front. If s = 0, then Csi−1 ∈ Yτ , so Csi−1 is not an α-front with α < τ .
Then by lemma 4.10 we have vri−1 ≥ τ for all r ≥ s, and since Ct−1

i does
not remain to Ci−1, we have vri−1 = M for all s+ 1 ≤ r ≤ t by remark 3.5.
If s > 0, Cs−1

i−1 must be a type B strictly minimal β-front with β < τ by
(iii). Since Ct−1

i ∈ Xτ , we have t−1 ≥ s−1 (the t = s−1 or t = s−2 case
is avoided since Cs−1

i−1 is strictly minimal and by lemma 4.8). So as we have
discussed in remark 4.11, we also have the velocity estimates and then can
use remark 3.5.

(v) Yτ+1 is complete to Xτ+1:
Yτ is complete to Xτ and so complete to Xτ+1. Then for any minimal type
A front Csj ∈ Xτ+1, there exists a Crk ∈ Yτ such that Crk = Φrs(C

s
j ). If

Crk ∈ Yτ+1 there is nothing to prove. If Crk /∈ Yτ+1, since Yτ+1 ⊇ Yτ \⋃
Ct
i
∈Zτ P (Cti ), there exists a Cti ∈ Zτ such that Crk ∈ P (Cti ). On the other

hand Csj /∈ P (Cti ), so we can find a s ≤ u ≤ r such that Φus (Csj ) ∈ P (Cti )
and Φu+1

s (Csj ) /∈ P (Cti ). Let Cul denote Φus (Csj ). If Φu+1
s (Csj ) = Cu+1

l−1 (i.e.
Cul is at the “left border” of P(Cti )), then l = i, so Cul must be Cti by (iv).
If Φu+1

s (Csj ) = Cu+1
l (i.e. Cul is at the “right border” of P(Cti )), then Cul

is an image of Cti , so by lemma 4.13, again Cul must be Cti . Anyway Cti is
an image of Csj , and now e(Cti ) is the first type A front mapped to Cti , so
we conclude that e(Cti ) is an image of Csj .

(vi) There is no α-front with α < τ + 1 in Yτ+1:
Because Λτ ⊆

⋃
Ct
i
∈Zτ P (Cti ), so there is no τ -front in Y ′τ ; and every element

in Eτ is a type A γ-front with γ > τ .
(vii) Elements of Λτ+1 are minimal:

Take a Cti ∈ Λτ+1 and assume δ = min{hsi |s > t} ≤ τ . Since τ∞ > τ ,
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we can take r = max{s > t|hsi = δ} and find Cri to be a type A minimal
δ-front. Since Yτ+1 is complete to Xτ+1, Cri is mapped to an ε-front with
ε ≤ δ in Yτ+1. However there is no such an ε-front by (vi).

Now we have accomplished the induction and finished the proof.

In fact, any α-front lies in P (Cti )(C
t
i ∈ Zτ ) with α > τ cannot be minimal,

so this algorithm actually calculates the behavior of all minimal fronts.
Now we are going to see the details of the subroutine.

• data structure: The SET structure is a collection of Cti s, we can delete
(resp. add) an element from (resp. into) the collection. Also, it has an
index i, for a SET S, we can use the method S.get(i) to get an ith car
Cti in S. If there is no ith car in S, the get method return null. The
method S.delete(i) deletes all ith cars in S. Using “for each Cti ∈S” we
can enumerate all Cti s in S from small i to large i, when i is the same from
small t to large t, in turn. Let Λτ and Yτ have the SET structure.

• initialization: keep an array (xi, vi, ti) with index i in the memory,
initialize (xi, vi, ti) to be (x0

i , v
0
i , 0) for all i.

• subroutine begin

• let iprev=null,Cprev=null

• To avoid the technical difficulties due to the periodic boundary condition,
here we normalize the index i of all Cti ∈ Λτ to 0 ≤ i ≤ N − 1. Then
we double Λτ in the meaning that if Cti ∈ Λτ with 0 ≤ i ≤ N − 1, then
Cti+N ∈ Λτ .

• for each Cti ∈ Λτ

– let (j, s, x) = (i, t, xti)
– if i = iprev, then:

if d(Cprev) =∞ then conclude d(Cti ) =∞, next Cti .
else, we have d(Cprev) = Cri−p, delete Cprev from Λτ , redefine
(j, s, x) = (i− p, t+ 2p, xti + p(τ − 1)). (Cti remains to Ci−p, verified
by lemma 4.12)

– redefine iprev = i, Cprev = Cti
– if Cti is type B, then: (this case, t must be 0 by definition of Yτ )

if Cti does not remain to Ci−1, then conclude d(Cti ) = Cti , next C
t
i .

else, redefine (j, s, x) = (i− 1, t+ 1, xti − 1)
– while x− xj−1 − 1 ≤ vj−1 + (s− tj−1 + 1)M − τ do:

(Cti remains to Cj−1)
∗ If Λτ .get(j − 1) is not null then:

we have Λτ .get(j − 1)=Cuj−1,
if d(Cuj−1) =∞, then conclude d(Cti ) =∞, next Cti .
else, we have d(Cuj−1) = Cwj−q, delete C

u
j−1 from Λτ , redefine

(j, s, x) = (j − q, s+ 2q, x− q(τ − 1)).

20



∗ else redefine (j, s, x) = (j − 1, s+ 2, x+ τ − 1)
∗ if j ≤ i−N , then conclude d(Cti ) =∞, next Cti

– conclude d(Cti ) = Cs+1
j

• Now we can “undouble” Λτ by delete all Cti ∈ Λτ whose index i ≥ N .

• Dτ is obtained. if ∞ ∈ Dτ , then output τ∞ = τ and R = Λτ , end the
program. else, Zτ = {d(Cti )|Cti ∈ Λτ}.

• For every Cti ∈ Zτ , calculate e(Cti ). If t = 0, we simply check the data of
time 0. If t > 0 then Ct−1

i is a type A strictly minimal τ -front, and we
have done the calculation in remark 4.9.

• Refresh (xi, vi, ti) and calculate Y ′τ : For every Cti ∈ Λτ with d(Cti ) = Cui−p,
if Cti is type A, redefine (xi−q, vi−q, ti−q) = (xti + 2τ + q(τ − 1), vt+2

i , t+
2 + 2q) and Yτ .delete(i− q) for all 0 ≤ q ≤ p; if Cti is type B, redefine
(xi−q, vi−q, ti−q) = (xti+τ+q(τ−1), vt+1

i , t+1+2q) and Yτ .delete(i−q)
for all 0 ≤ q ≤ p.

• The refresh of (xi, vi, ti) is verified by the calculation in remark 4.11, and
now the modified Yτ is just Y ′τ .

• subroutine end

About the computational requirement of this algorithm, note that #Eτ ≤
#Dτ = #Λτ , so #Yτ+1 ≤ #Yτ ≤ #Y0 ≤ N . One time the subroutine runs,
the while do loop runs less than 4N times, because once we found Cti remains
to Ci−p, the [i − p, i − 1] interval is then skipped afterward. Similarly, the
(xi, vi, ti) refresh loop runs less than N times, because for every two Cti , C

s
j

in (modified)Λτ with d(Cti ) = Cri−p, d(Csj ) = Cuj−q, the interval [i − p, i] and
[j − q, j] are disjoint. So we conclude that this is an O(N) algorithm. Besides,
corollary 4.6 and remark 4.11 just can be used for optimizing the subroutine.

5. Summary and further discussion

We have classified all stationary states of Eq.(2), and proved that every
state finally evolves to a stationary state if we assume the periodic boundary
condition. The results about the “stability” of a τ -front show that the smaller
τ is, the easier the front remains. Tools to investigate the detailed behavior
of fronts are developed, briefly speaking, after a specific time point, strictly
minimal fronts emerge in a clear shape and then dominate the time evolution
of cars. We think these results grasped the main characters of model (1).

All these characters are described with the concept “front”, which focus on
the non-trivial behavior of cars in an accelerating process. We think this is
an important concept for us to analyze traffic CA models in Lagrange form.
For example, there is another widely used (such as in the NS model) effect
which is considered to be associated with the inertia of cars. It requires that
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vti ≤ vt−1
i + 1, i.e. the acceleration cannot exceed 1. This effect however does

not result in multiple branches in the fundamental diagram, and we find that
if the term ht−1

i of model (1) is replaced by vt−1
i + 1, the process for successive

cars with headway τ to accelerate from velocity τ to the free speed M always
leads to successive cars with headway M , but not the characteristic headway
2M − τ . We think analysis focused on such kind of behavior can reveal some
nature of a traffic CA.

Now we are going to propose a generalization of model (1) which takes in a
driver’s anticipation. A kind of generalization is proposed by Nishinari,[12] but
with too many terms to avoid a collision. Our generalized equation is written
as:

uti = min(M,hti, h
t−1
i ) (3)

vti = min(M,uti + [αiuti+1 + βi]) (4)

hti and vti are as above. αi and βi are real numbers such that 0 ≤ αi ≤ 1, 0 ≤
βi < 1. [·] is known as the Gauss function, [x] represents the maximal integer
which does not exceed x. Let αi = βi = 0 for all i we get Eq.(2).

Proposition 5.1. There is no collision in this generalized model.

Proof. What to prove is that ht+1
i = hti − vti + vti+1 cannot be negative. If

vti+1 = M , this is obvious. So we assume vti+1 = uti+1+[αi+1u
t
i+2+βi+1] ≥ uti+1.

hti ≥ uti by Eq.(3), vti ≤ uti + [αiuti+1 + βi] by Eq.(4). So it is enough to prove
uti−(uti+[αiuti+1 +βi])+uti+1 ≥ 0. Note that [αiuti+1 +βi] ≤ [uti+1 +βi] = uti+1,
so the inequality follows.

Note that the parameter αi and βi can be chosen differently for each i, or vary
randomly in the time evolution. The NS model introduced a random braking
which is known to be responsible for spontaneous jam formation, however it is
likely to find a spontaneous jam formation in this generalized model when we set
each αi and βi differently to get a but deterministic model. When αi = α, βi = β
for all i, we have an analogue to lemma 2.2 as the following:

Proposition 5.2. When αi = α, βi = β for all i, the following inequalities
hold:

(i) ht+1
i ≥ min(hti, u

t
i+1, u

t
i+2)

(ii) ht+1
i ≥ min(M,hti, h

t
i+1, h

t
i+2, h

t−1
i+1, h

t−1
i+2)

(iii) ut+1
i ≥ min(uti, u

t
i+1, u

t
i+2)

Proof. (i) If vti+1 = M , then ht+1
i ≥ hti. Now we assume vti+1 = [αuti+2 +

β] + uti+1. Then

ht+1
i = hti + vti+1 − vti

≥ hti + ([αuti+2 + β] + uti+1)− ([αuti+1 + β] + uti)
≥ hti + [α(uti+2 − uti+1)] + uti+1 − uti (for [a]− [b] ≥ [a− b])
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≥ [α(uti+2 − uti+1) + uti+1] (for hti ≥ uti)
= [αuti+2 + (1− α)uti+1]
≥ min(uti+1, u

t
i+2)

(ii) Just substitute Eq.(3) into (i).
(iii) ut+1

i = min(M,ht+1
i , hti) ≥ min(M,uti+1, u

t
i+2, h

t
i) ≥

min(uti, u
t
i+1, u

t
i+2).

(ii)(iii) of proposition 5.2 can be understood as that there is no spontaneous
jam formation when αi and βi are set to be the same for all i.

The Gauss function here is introduced only for changing the real number
into integer, however it certainly makes some differences. It is not clear yet
whether this model agrees with the realistic traffic.
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